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ABSTRACT

ON THE N -BODY PROBLEM

Zhifu Xie

Department of Mathematics

Doctor of Philosophy

In this thesis, central configurations, regularization of simultaneous binary collision, linear stability

of Kepler orbits, and index theory for symplectic path are studied. The history of their study is

summarized in section 1.

Section 2 deals with the following problem: given a collinear configuration of 4 bodies, under

what conditions is it possible to choose positive masses which make it central. It is always possible

to choose three positive masses such that the given three positions with the masses form a central

configuration. However, for an arbitrary configuration of 4 bodies, it is not always possible to

find positive masses forming a central configuration. An expression of four masses is established

depending on the position x and the center of mass u, which gives a central configuration in the

collinear four body problem. Specifically it is proved that there is a compact region in which

no central configuration is possible for positive masses. Conversely, for any configuration in the

complement of the compact region, it is always possible to choose positive masses to make the

configuration central.

The singularities of simultaneous binary collisions in collinear four-body problem is regularized

by explicitly constructing new coordinates and time transformation in section 3. The motion in the

new coordinates and time scale across simultaneous binary collision is at least C2. Furthermore, the
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behavior of the motion closing, across and after the simultaneous binary collision, is also studied.

Many different types of periodic solutions involving single binary collisions and simultaneous binary

collisions are constructed.

In section 4, the linear stability is studied for the Kepler orbits of the rhombus four-body

problem. We show that, for given four proper masses, there exists a family of periodic solutions

for which each body with the proper mass is at the vertex of a rhombus and travels along an elliptic

Kepler orbit. Instead of studying the 8 degrees of freedom Hamilton system for planar four-body

problem, we reduce this number by means of some symmetry to derive a two degrees of freedom

system which then can be used to determine the linear instability of the periodic solutions. After

making a clever change of coordinates, a two dimensional ordinary differential equation system is

obtained, which governs the linear instability of the periodic solutions. The system is surprisingly

simple and depends only on the length of the sides of the rhombus and the eccentricity e of the

Kepler orbit.

In section 5, index theory for symplectic paths introduced by Y. Long is applied to study the

stability of a periodic solution x for a Hamiltonian system. We establish a necessary and sufficient

condition for stability of the periodic solution x in two and four dimension.



www.manaraa.com

ACKNOWLEDGMENTS

First of all, I would like to take this opportunity to express my sincere gratitude to my advisor, Dr.

Ouyang Tiancheng, for his tremendous amount of time, energy, and support he has given me during

these years. I would like to thank all the committee members for reading my dissertation and

giving me lots of valuable suggestion. In particular, I would like to thank Dr. Bakker Lennard for

his time and effort in proofreading all my papers during these years at Brigham Young University.

Finally, I am so grateful to all the math teachers I have had through these years, who lead me

into the math field. I would also like to thank the department of mathematics at Brigham Young

University for their unlimited supports.



www.manaraa.com



www.manaraa.com

Table of Contents

1 Introduction 1
1.1 Central Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Regularization of Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Linear Stability of Homographic Periodic Solutions for Rhombus Shape . . . . . . 4
1.4 Linear Stability and Index Theory for Symplectic Paths . . . . . . . . . . . . . . . 5

2 Central Configuration in Collinear Four-body Problem 5
2.1 Importance of Central Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Central Configuration in the Collinear Four-body Problem . . . . . . . . . . . . . 8

2.2.1 General Solutions for 4-body Collinear Central Configuration . . . . . . . 11
2.2.2 Symmetrical Collinear Central Configuration . . . . . . . . . . . . . . . . 13
2.2.3 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Regularization of Simultaneous Binary Collision 26
3.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 The Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 C2 Regularization of the Simultaneous Binary Collisions . . . . . . . . . . . 35

3.2 Periodic Solutions with SBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Time Reverse Extension of Simultaneous Binary Collision . . . . . . . . . . 36
3.2.2 Behavior of SBC at the Singular Set . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Construction of Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Periodic Solutions with Single Binary Collisions and Simultaneous Binary Collisions 43
3.3.1 Type A Periodic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Type B Periodic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Stability of Periodic Solutions Generated from Central Configuration 50
4.1 Kepler Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Constrained Hamilton System on Rhombus Four-Body Problem . . . . . . . . . . 55
4.3 Decoupling the Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Index Theory for Symplectic Paths and Stability of Periodic Solutions 66
5.1 Floquet Theory and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Index Theory for Symplectic Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Definition of Index Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Some Properties of Index Functions . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Index for periodic solutions of Hamiltonian system and its stability zone . . . . . 78
5.4 Stability and SP (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



www.manaraa.com



www.manaraa.com

List of Tables

1 The Traces for a=1, b=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2 The Traces for a = 1, b = 1/

√
3 + 1/100 . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



www.manaraa.com



www.manaraa.com

List of Figures

1 Central Configuration Region with Center at Origin . . . . . . . . . . . . . . . . . 10
2 Central Configuration Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Boundary of C.C. Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 m1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 m4 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 C.C. Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 C.C. Region for fixed −1 ≤ u ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 C.C. Region for fixed 1 ≤ u and u ≤ −1 . . . . . . . . . . . . . . . . . . . . . . . . 22
9 Change of the Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10 The Surface of m2 = 0 and m3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11 Extension of ξ1 to ξ̃1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12 Extension of η1 to η̃1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13 SBC Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
14 Periodic Solution with SBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
15 Type A Periodic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
16 Type B Periodic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
17 Rhombus Four Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
18 h(a, b) > 0 region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
19 h(a, b) > 0 region with a=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20 The R3-cylindrical coordinate representation of Sp(2)01 . . . . . . . . . . . . . . . . 73
21 Singular Sets: Sp(2)01 and Sp(2)0ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
22 1-homotopy class of α1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
23 Stable Region on AB-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

x



www.manaraa.com



www.manaraa.com

1 Introduction

Can we predict the motion of the Sun and the planets for the next billion years? We tend to think

of the planets always moving in fixed orbits around the Sun. But do they really, and will they

continue to do so for, say, the next billion years? Is the motion of the planets predictable and

stable [6]? The French mathematician Pierre Simon de Laplace [15] said in 1843 that

“· · · if we conceive of an intelligence that at a given instant comprehends all the re-

lations of the entities of this universe, it could state the respective position, motions,

and general affects of all these entities at any time in the past or future.”

But, since we are only able to approximate the current configuration of the Solar System, (i.e. the

masses, positions, and velocities of all the objects in the Solar System), can we predict the future

configuration of the Solar System by the Newtonian model? Will the Solar System in a billion

years look like it does today? Is the Solar System stable? Over the past 350 years, many have

attempted to answer these questions.

The first complete mathematical formulation of this problem appeared in Newton’s Principia

[25]. Since gravity was responsible for the motion of planets and stars, Newton had to express

gravitational interactions in terms of differential equations. Consider N point particles with posi-

tive masses mj and positions qj ∈ Rd(j = 1, · · · , N), where d is the dimension of the space where

the particles live. The motion of the particles, which is governed by Newton’s gravitational law,

can be stated as

mj q̈j =
N∑

k 6=j

mjmk(qk − qj)
|qk − qj |3

=
∂U(q)
∂qj

, (1.1)

where q = (q1, · · · , qN ) and U(q) is the Newtonian potential,

U(q) =
∑

1≤k<j≤n

mkmj

|qk − qj |
. (1.2)

These equations are called the N -body problem of celestial mechanics.

There are many problems associated with the dynamics of such a system, for example, exis-

tence of periodic solutions, stability of periodic solutions, regularization of singularities, central

configurations and so on. In the early stages of the study of N -body problem its main task was

to calculate the orbits of the planets and predict the ephemerides over a long time. “However,

the mathematical difficulties connected with this field inspired more and more the study of basic

1
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theoretical problems leading to the development of new mathematical tools” (Jürgen Moser, Stable

and Random Motions in Dynamical Systems with Special emphasis on Celestial Mechanics [24]).

The problem of stability, which concerns the behavior of the solutions for an infinite time interval,

is one of the oldest questions in dynamical systems. Are there solutions which do not experience

collisions and do not escape? Are there solutions stable? These questions can be answered by

the construction of periodic solutions and quasi-periodic solutions. The successful construction of

such solutions for N -body problem is due to Carl Ludwig Siegel, Andrei Nikolaevich Kolmogorov,

Vladimir Igorevich Arnold and Jürgen Moser. It provides a set of positive measure of rigorous

solutions which avoid collisions and infinity for all time [9], [24]. Instead of studying the basic

theoretical problem, we study the properties of some specific solutions. In section 3 and section

4, we study the behavior of collision solution in collinear four-body problem and the problem of

the stability of a Kepler solution.

The study of N-body problem has successfully developed differential and integral calculus, con-

vergence of series expansions, and chaotic dynamics. Many natural questions in N-body problem

are difficult to solve with current theory, especially as the value of N is increased [14]. Many great

mathematicians, such as Leonard Euler (1707-1783), Louis Lagrange (1736-1813), G.G. Jacobi

(1804-1851), George W. Hill (1838-1914), Henri Poincaré (1854-1912), George D. Birkhoff (1884-

1944), Carl Ludwig Siegel (1896-1981), Andrei Nikolaevich Kolmogorov (1903-1987), Vladimir

Igorevich Arnold (1937-), Jürgen Moser (1928-1999) and many others, attacked this problem on

account of its importance for astronomy. “Despite the efforts by such outstanding mathematicians

for over 200 years, the problem for n > 2 remains unsolved to this day” (C.L. Siegel and J.K.

Moser, Page 20 in [43]). Newton once wrote that he only got headaches when he studied the

three-body problem [50].

Contributions and Outline of the Thesis

1.1 Central Configurations

In order to make progress against such complexity, we can simplify questions by making assump-

tions about the parameters of the system. The most successful example is the study of a particular

periodic orbit of the planar N -body problem in which the particles remain in the same shape rel-

2
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ative to one another [14]. The shapes possible for the particles in such orbits are called central

configurations (this term appeared first in [51]). A configuration q = (q1, · · · , qn) is collinear if

all the qis are located on a line. A collinear central configuration is called a Moulton configura-

tion after F.R. Moulton who proved that for a fixed mass vector m = (m1, · · · ,mn) and a fixed

ordering of the bodies along the line, there exists a unique collinear central configuration (up to

translation and scaling) [23]. In section 2, we consider the inverse problem: given a collinear

configuration, find the positive mass vectors, if any, for which it is a central configuration. Recall

for any given three collinear positions, it is always possible to choose three positive masses making

it central [1]. This result is generally not true for n ≥ 4. The main result in section 2 is to prove

that for n = 4, there exists a compact region E in configuration space such that within E it is

not possible to choose a positive mass vector to make the configuration central. Furthermore, on

the complement G of the compact region E, there always exists positive mass vector to make it

central. The equations determining central configurations can be generalized to define them in

higher dimensions as well; more precise definitions will be given in section 2. Results on this

section and other related results are based upon those obtained in [7], [30], [31], [48].

1.2 Regularization of Singularity

A position q = (q1, · · · , qN ) of the particles will be called a collision if qi = qj for some i 6= j. Let

4ij := {q ∈ RNd, qi = qj} and 4 :=
⋃

1≤j<i≤N 4ij be the set of collisions. The equations (1.1)

are defined everywhere except at collisions. Suppose we are given the position and momentum

of the particles at time t = t1. If we do not start at a collision, then the standard theorems of

differential equations assure the existence and uniqueness of a solution of equations (1.1) on some

maximal interval [t1, t2). If t2 <∞, then the solution is said to experience a singularity at t2.

The behavior of a solution as it approaches a singularity is not fully understood, but some of

the possibilities are known. If all of the particles approach a limiting position as t→ t2, it is not

difficult to show that the limiting position must be a collision [43], [51]. The singularity is then

said to be due to collision and the solution is said to end in collision. If m of the particles coincide

while the rest have distinct positions, then the collision is called an m-tuple collision.

For the two-body problem one can change variables so that a binary collision transforms to

a regular point of the equations. Such a transformation is called a regularization of the binary

3
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collision. The solution can then be extended through the singularity. The extension corresponds

physically to an elastic bounce. Since binary collision can be regularized, one is lead to ask whether

the same can be done to other singularities. The singularity of collinear triple collision can not

be regularized; see the work of R. McGehee [36]. The singularity of simultaneous binary collisions

(SBC) is the only case left open for investigations. There are many research papers which studied

the regularization of simultaneous binary collision with some assumption on masses; see the work

of Belbruno [2], Punosevac and Wang [35], Simo and Lacomba [47] etc.

In section 3.1 we construct coordinate transforms in new time scale that remove the singularities

of simultaneous binary collision in collinear four-body problem without any assumption on mass.

The regularization is at least of class C2. Based on the results of regularization of SBC in section

3.1, the behavior of the motion is studied for the motion acrossing collisions. The existence of

a family of periodic solutions with simultaneous binary collision is proved in section 3.2. More

periodic solutions involving single binary collision and SBC are constructed in section 3.3. Results

on this section are based upon those obtained in [33].

1.3 Linear Stability of Homographic Periodic Solutions for Rhombus

Shape

Planar central configurations give rise to a family of homographic periodic solutions. In section 4

we consider the linear stability of the Kepler orbits of the rhombus four-body problem. We show

that, for given four proper masses, there exists a family of periodic solutions for which each body

with the proper mass is at the vertex of a rhombus and travels along an elliptic Kepler orbit.

Instead of studying the 8 degrees of freedom Hamilton system for planar four-body problem, we

reduce this number by means of some symmetry to derive a two degrees of freedom system which

then can be used to determine the linear instability of the periodic solutions. After making a

clever change of coordinates, a two dimensional ordinary differential equation system is obtained,

which governs the linear instability of the periodic solutions. The system is surprisingly simple

and depends only on the length of the sides of the rhombus and the eccentricity e of the Kepler

orbit. We prove the homographic periodic solutions of the rhombus four-body problem is linearly

unstable. Results on this section are based upon those obtained in [32].

4
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1.4 Linear Stability and Index Theory for Symplectic Paths

For general periodic solution of N-body problem, it is very hard to reduce the dimension. We

apply index theory for symplectic paths introduced by Y. Long to study the stability of a periodic

solution x for a Hamiltonian system in section 5. Based on the study of the Y. Long’s book

[17], here we get some preliminary results on the relationship between stability and index theory.

We establish a necessary and sufficient condition for stability of the periodic solution x in two

dimension. We prove that the solution x is linear stable if and only if its index ind(x) is an odd

integer. We also get some important results in four dimension and they could be applied to study

the linear stability of periodic solutions in some N−body problem. Results on this section are

based upon those obtained in [34].

2 Central Configuration in Collinear Four-body Problem

2.1 Importance of Central Configurations

After making the definition of central configurations more precisely, this section will establish some

notations and briefly sketch the important applications of central configurations.

In the N -body problem, we consider N particles at qi ∈ Rd with positive masses mi ∈ R+,

i = 1, · · · , N , and the dynamics given by equation (1.1), where U is the Newtonian potential

defined in equation (1.2). We will use q = (q1, · · · , qN ) ∈ RNd and m = (m1, · · · ,mN ) ∈ RN+ to

denote the position and mass vectors respectively. Let

C = m1q1 + · · ·+mnqN , M = m1 + · · ·+mN , c = C/M

be the first moment, total mass and center of mass of the bodies, respectively.

Definition 2.1. A configuration q = (q1, · · · , qN ) is called a central configuration if the

acceleration vectors of the bodies satisfy:

N∑
j=1,j 6=k

mj(qj − qk)
|qj − qk|3

= −λ(qk − c) 1 ≤ k ≤ N. (2.1)

for a constant λ.

The value of the constant λ in (2.1) is uniquely determined by

λ =
U

I
, (2.2)

5
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where I =
∑N

k=1mk|qk|2. Moreover, ifA is an orthogonal matrix, then clearlyAq = (Aq1, · · · , AqN )

is also a central configuration with the same λ. If a scalar k 6= 0, then kq = (kq1, · · · , kqN ) is also

a central configuration with λ replaced by λ
k3 . Thus any configuration similar to a central con-

figuration, either by rescaling or rotating, is also a central configuration. When counting central

configurations, we count only similarity classes.

A complete understanding of the nature of central configuration is of fundamental importance

to the N -body problem of celestial mechanics: these configurations play an essential role in the

global structures of the solutions of the n-body problem. More properties of central configuration

can be found in [38],[42]. Following the presentation in [38], we give some examples of the properties

of central configuration here.

What happens when the masses are released from a central configuration with zero initial

velocity? All particles accelerate toward the origin in such a way that the configuration collapses

homothetically resulting in a collision singularity. Simple collision orbits of this kind were the first

explicitly known solutions of the 3-body problem [12]. These are not the only possible orbits which

end in collision of all N particles, but it can be shown that for any such orbits, the configuration

is asymptotically a central configuration.

A planar central configuration may give rise to a family of periodic solutions. The particles,

after being released from the central configuration with initial velocities normal to their position

vectors and with magnitudes proportional to their distances from the origin, traverse an ellip-

tical orbit as in the Kepler problem. Moreover the configuration remains similar to the initial

configuration throughout the motion,varying only in size.

The best known example is the equilateral triangle case which can be used to analyze the

Sun-Jupiter-Trojan asteroid configurations [49]. If the velocities are sufficiently large, the orbits

will be circular. As the velocities tend to zero, the ellipses become more and more eccentric and

the periodic solutions approach the collision solutions described in the previous paragraph.

Central configuration also plays a role in the study of the topology of the energy and angular

momentum levels of the planar n-body problem. Because the n-body problem is a Hamiltonian

system, the total energy is a constant of motion and so orbits in phase space move on level sets of

the Hamiltonian. Similarly, the angular momentum is conserved. As total energy and the angular

momentum vary, the topology of these level sets changes. It turns out that bifurcations occur

exactly at the level which contains the circular periodic orbits mentioned above.

6
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Central configurations are important in the study of the N -body problem. It is natural to

inquire about the collisions of some subset of particles in the N -body problem. Central con-

figurations turn out to be the limit configurations in collisions. More precisely, if N points in

the N -body problem collide simultaneously at a finite time t2 then the rescaled position vector

q∗ = (t − t2)2/3q has as its limit a central configuration with the same mass vector [14]. In the

construction of periodic solution with simultaneous binary collision, central configuration plays an

important role. More detail will be given in section 3.2.

Finally, from a mathematical viewpoint, the problem of central configurations is one of possible

solvable problems in the study of the dynamics of the N -body problem although itself is a very

difficult problem. Almost every result in three-body dynamics is related to central configurations.

For example, to understand the stability of the configurations to perturbations, it amounts to

understanding the linearization of the dynamics about the central configurations. More detail will

be given in section 4.

For these and other reasons central configurations have been studied extensively [38], [42]. But

the understanding of central configurations is very difficult and still far from being complete.

A basic question on central configuration is about the finiteness of the number of central

configuration:

Given positive real numbers m1, · · · ,mN as the masses in the n-body problem of

celestial mechanics, is the number of central configuration finite?

The problem is in Wintner’s book (1941) on celestial mechanics. In 1991, Steve Smale [44] de-

scribed the finiteness problem as one of the eighteen great problems not solved in the 20th century.

Also V.I. Arnold, on behalf of the International Mathematical Union, has written to a number of

mathematicians with a suggestion that they describe some great problems for the next century

[45]. Problem 6 in Arnold’s report is the finiteness of the number of central configuration as a

mathematical problem for the 21 century.

Results pertaining to how many central configurations exist have appeared over the time period

from Euler, Lagrange, and Moulton to the present. For the 3-body problem there are five central

configurations: three found by Lagrange, two by Euler. Moulton proved that for a fixed mass

vector m̄ = (m1, · · · ,mN ) and a fixed ordering of the bodies along the line, there exists a unique

collinear central configuration (up to translation and scaling) [23].

7
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The inverse problem of the finiteness of the number of central configuration is also studied by

many mathematicians: Given a configuration, find the mass vectors, if any, for which it is a central

configuration. Moulton also considered the inverse problem for the collinear case (if all the qis are

located on a line) in [23]. His results depend on whether N is even or odd. Albouy and Moeckel

also study the inverse problem of collinear configuration of N bodies in [1]. They prove that for

N ≤ 6, each configuration determines a one-parameter family of masses (after normalization of

the total mass) and the parameter is the center of mass when N is even and the square of the

angular velocity of the corresponding circular periodic orbit when N is odd. For N ≥ 7, it is still

open. In their study, masses are allowed to be negative. In this section we consider the inverse

problem: given a collinear configuration, find the positive mass vectors, if any, for which it is a

central configuration.

2.2 Central Configuration in the Collinear Four-body Problem

If we let

ajk =
(qk − qj)
|qk − qj |3

if j 6= k, ajj = 0, m = (m1,m2, · · · ,mn)T ,

A = (ajk)1≤j,k≤n ,

then the central configuration equations become

Am = −λq + L
⊗

µ = b̄, where L = (1, 1, · · · , 1) ∈ Rn (2.3)

for some constant µ ∈ Rd, where
⊗

denotes the tensor product, i.e. L
⊗
µ = (µ, · · · , µ)T .

Comparing µ in (2.3) with c in (2.1), we have µ = λc.

Due to the fact that central configuration is invariant up to translation and rescaling, we can

choose coordinates for the collinear four bodies as follows. Let x1 = −s− 1, x2 = −1, x3 = 1, x4 =

t + 1, where s, t > 0. If we let r = −λ, u = µ (for ease of notation), then central configuration

equation (2.1) in collinear four bodies case is

Am = rx+ uL, (2.4)

8
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where

A =



0 s−2 (s+ 2)−2 (s+ t+ 2)−2

−s−2 0 1/4 (t+ 2)−2

− (s+ 2)−2 −1/4 0 t−2

− (s+ t+ 2)−2 − (t+ 2)−2 −t−2 0


. (2.5)

and b̄ = rx+ uL = (r (−s− 1) + u,−r + u, r + u, r (t+ 1) + u)T .

In this section, the following results are obtained :

Theorem 2.1. Let x = (x1, x2, x3, x4) = (−s − 1,−1, 1, t + 1) be a collinear configuration with

positive mass vector m = (m1,m2,m3,m4) and assume that the center of mass c = u/λ =∑4
i=1mixi = 0. Then there exist two constants t0, s0 and two implicit functions pm02(t, s) = 0

and pm03(t, s) = 0 which are defined by (2.8), (2.9) respectively, such that

1) pm02(t, s) = pm03(s, t).

2) The equation pm02(t, s) = 0 can be globally solved for t to get a smooth monotone increasing

function t2 = f(s2). Furthermore, lims2→∞ f(s2) = ∞. Similarly, we can get a smooth monotone

increasing function s3 = f(t3) from pm03(t, s) = 0 such that limt3→∞ f(t3) = ∞.

Then there exist an unbounded stripe-like region B bounded below by s = s0, bounded to the left by

t = t0, between (f(s2), s2) and (t3, f(t3)). For any point (t, s) ∈ B, with the center of mass at ori-

gin, the configuration x can be a central configuration with a positive mass m = (m1,m2,m3,m4)

which is unique up to a scalar.

Remark 1: Numerically, the region B is the one shown in figure 1. Here t0 = s0 = 1.396812289.

Theorem 2.2. Let x = (x1, x2, x3, x4) = (−s − 1,−1, 1, t + 1) be a collinear configuration with

positive mass vector m = (m1,m2,m3,m4). Then there exist an unbounded region G in the first

quadrant (t > 0, s > 0) bounded away from the origin by an implicit function h(t, s) = 0 defined

by (2.12), such that for any (t, s) ∈ G, there exist positive masses (m1,m2,m3,m4) making x

as a central configuration. Conversely for any (t, s) in E = R2+ \ G, there is no positive mass

m = (m1,m2,m3,m4) making x = (−s − 1,−1, 1, t + 1) central, where R2+ is the first quadrant

in the plane.

Remark 2: Numerically the region G is the one shown in figure 2.

9
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The mass vector m = (m1,m2,m3,m4) = m(x, u) depends on the position and center of mass up

to a scalar. For fixed x, u, there is a unique solution m(x, u) making x central with center of mass

Figure 1: Central Configuration Region with Center at Origin

Figure 2: Central Configuration Region

10
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at u. Define

u(x) := u(t, s) := min{u|x forms a central configuration centered at u with positive mass m(x,u)},

ū(x) := ū(t, s) := max{u|x forms a central configuration centered at u with positive mass m(x,u)}.

If the set {u|x forms a central configuration centered at u with positive mass m(x,u)} is empty,

let u(x) = ū(x) = 0. Defining

d(t, s) := ū(t, s)− u(t, s),

we have the following.

Theorem 2.3. 1) For each point (t0, s0) ∈ E, d(t0, s0) = 0.

2) For each point (t0, s0) ∈ G, d(t0, s0) > 0 and

lim
t0→∞,s0→0

d(t0, s0) = 0,

lim
t0→0,s0→∞

d(t0, s0) = 0.

2.2.1 General Solutions for 4-body Collinear Central Configuration

Given s, t > 0, we will find the general solution of masses m1, · · · ,m4 with two parameters r, u

for the 4-body collinear central configuration, i.e. a solution of (2.4).

Because the matrix A defined by (2.5) is skew symmetric, the determinant of A is the square of

its Pfaffian, that is det(A) = (PfA)2 = [a12a34− a13a24 + a14a23]2 = (st)−2− ((s+ 2)(t+ 2))−2 +

1
4 (s + t + 2)−2 > 0. So the matrix has full rank. Therefore, the solution is uniquely determined.

Albouy and Mockel [1] proved that the given 4-body collinear configuration determines a two-

parameter family of masses making it central but allowing masses to be negative. Here we can

find a solution of masses explicitly by standard row reduction:

m3 =

((
−r (t+ 1) + u

s2
+

−r + u

(s+ t+ 2)2

)
s−2 − r (−s− 1) + u

s2 (t+ 2)2

)
((

1
s2t2

+ 1/4 (s+ t+ 2)−2

)
s−2 − 1

s2 (t+ 2)2 (s+ 2)2

)−1

,

m4 =

((
−r + u

s2
+
−r + u

(s+ 2)2

)
s−2 − 1/4

r (−s− 1) + u

s2

)

11
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((
− 1
s2t2

+
1

(s+ 2)2 (t+ 2)2

)
s−2 − 1/4

1
s2 (s+ t+ 2)2

)−1

.

If we write the central configuration equation from right to left, i.e. from m4 to m1, we have

m′ = (m4,m3,m2,m1), x′ = (x4, x3, x2, x1), r, u the same constants, then the coefficient matrix is

B =



0 −t−2 − (t+ 2)−2 − (s+ t+ 2)−2

t−2 0 −1/4 − (s+ 2)−2

(t+ 2)−2 1/4 0 −s−2

(s+ t+ 2)−2 (s+ 2)−2
s−2 0


.

The central configuration equation changes to

Bm′ = rx′ + uL = (r (t+ 1) + u, r + u,−r + u, r (−s− 1) + u)T . (2.6)

If the both sides of (2.6) are multiply by −1, s and t are exchanged, and u is switched to −u,

then equation (2.6) will be the same as the equation (2.4). Therefore, m1,m2 are symmetrical to

m3,m4 respectively in the sense that m1 is equal to m4 by exchanging s and t, and switching u

to −u in m4 (similarly for m2 and m3). So m1,m2 have the following expressions:

m1 =

((
−r − u

t2
+
−r − u

(t+ 2)2

)
t−2 − 1/4

r (−t− 1)− u

t2

)
((

− 1
s2t2

+
1

(s+ 2)2 (t+ 2)2

)
t−2 − 1/4

1
t2 (s+ t+ 2)2

)−1

,

m2 =

((
−r (s+ 1)− u

t2
+

−r − u

(s+ t+ 2)2

)
t−2 − r (−t− 1)− u

t2 (s+ 2)2

)
((

1
s2t2

+ 1/4 (s+ t+ 2)−2

)
t−2 − 1

(t+ 2)2 t2 (s+ 2)2

)−1

.

Note that r = −λ is negative if m = (m1,m2,m3,m4) is a positive solution of (2.4). Also m/|r|

is a positive solution of

Am = −x+ (u/|r|)L. (2.7)

Because we are only concerned with the sign of the mass functions, we can assume r = −1. Under

this assumption u = λc = −rc becomes the center of mass. In the following two sections, we will

analyze the mass functions and find the possible region in ts−plane such that the mass functions

are positive.

12
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2.2.2 Symmetrical Collinear Central Configuration

Again, in this subsection, we will fix the center of mass at the origin (i.e. u = 0) and let r = −1.

Then x2 is symmetric to x3. By using symbolic computation of Matlab, we find the numerators

and denominators of the masses. The numerators of masses are:

nm1 = (s+ 2)2 (s+ t+ 2)2 s2
(
−4 t2 − 16 t− 16 + t5 + 5 t4 + 8 t3

)
,

nm2 = 4 (t+ 2)2
(
16 + 36 s2t+ 48 s+ 32 s3 + s5 + 9 s4 + 40 st+ 8 st2 + 2 s4t+ 14 s3t+

s3t2 + 5 s2t2 + 56 s2 + 4 t2 + 16 t− t3s2 − 2 t4s− 6 t3s− t5 − 5 t4 − 8 t3
)
s2,

nm3 = −4
(
−16− 8 s2t− 32 t3 − t5 − 9 t4 − t3s2 − 16 s− 40 st− 36 st2 − 5 s2t2 − 2 t4s−

14 t3s− 4 s2 − 56 t2 − 48 t+ s5 + 2 s4t+ 5 s4 + s3t2 + 6 s3t+ 8 s3
)
t2 (s+ 2)2 ,

nm4 = (t+ 2)2 (s+ t+ 2)2 t2
(
−4 s2 − 16 s− 16 + s5 + 5 s4 + 8 s3

)
.

They have the same positive denominator

dm0 = 256 + 512 t+ 384 t2 + 16 t4 + 128 t3 + 384 s2 + 16 s4 + 128 s3 + 512 s+ 4 s4t2 + s4t4+

16 t3s3 + 4 t3s4 + 896 st+ 576 st2 + 16 s4t+ 160 s3t+ 64 s3t2 + 304 s2t2 + 16 t4s+

160 t3s+ 4 s3t4 + 64 t3s2 + 4 s2t4 + 576 s2t.

Then mi = nmi

dm0
, 1 ≤ i ≤ 4. Because the denominator is bigger than 256 for s, t > 0, the masses

can not go to infinity if s, t are bounded. The configuration fails to be a central configuration if

only if some of masses become negative. The possible negative terms in numerators are :

pm01 = t5 + 5 t4 + 8 t3 − 4 t2 − 16 t− 16,

pm02 = 16 + 48 s+ 56 s2 + 32 s3 + 9 s4 + s5 +
(
16 + 40 s+ 36 s2 + 14 s3 + 2 s4

)
t+(

4 + 8 s+ 5 s2 + s3
)
t2 +

(
−8− 6 s− s2

)
t3 + (−5− 2 s) t4 − t5, (2.8)

pm03 = 16 + 48 t+ 56 t2 + 32 t3 + 9 t4 + t5 +
(
16 + 40 t+ 36 t2 + 14 t3 + 2 t4

)
s+(

4 + 8 t+ 5 t2 + t3
)
s2 +

(
−8− 6 t− t2

)
s3 + (−5− 2 t) s4 − s5, (2.9)

pm04 = s5 + 5 s4 + 8 s3 − 4 s2 − 16 s− 16.

It is clear that the sign of the coefficients in the polynomial pm01 changes only once. By

Descartes’ rule of sign, there is exactly one positive root t0 of pm01. Because pm01 does not

13
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depend on s, the equation pm01 = 0 implicitly gives rise to a straight line t = t0 in the ts-plane

(Figure 3, m1 = 0). Also m1 is positive on the right of this line because pm01 goes to infinity as t

goes to infinity. Similarly, the equation pm04 implicitly gives rise to a straight line s = s0 in the

ts-plane (Figure 3, m4 = 0). m4 is positive above this line because pm04 goes to infinity as s goes

to infinity. So the region of m1 > 0 and m4 > 0 is a nonempty open set indicated in figure 3.

Figure 3: Boundary of C.C. Region

If we consider pm02 to be a polynomial in the variable t, then the coefficients are c0(s) = 16 +

48 s+ 56 s2 + 32 s3 + 9 s4 + s5, c1(s) = 16 + 40 s+ 36 s2 + 14 s3 + 2 s4, c2(s) = 4 + 8 s+ 5 s2 + s3,

c3(s) = −8 − 6 s − s2, c4(s) = −5 − 2s, c5(s) = −1 with respect to the increasing order of the

variable t, i.e. pm02 = c0(s) + c1(s)t+ c2(s)t2 + c3(s)t3 + c4(s)t4 + c5(s)t5. For s > 0, c0, c1, c2 are

positive and c3, c4, c5 are negative. So the sign of the polynomial pm02 changes only once implying

there is exactly one positive root t for any given s > 0. Therefore, pm02 = 0 implicitly determines

a smooth monotone increasing function t = f(s) with the domain s > 0. Because the degree of the

positive coefficients c0(s), c1(s), c2(s) are larger than the degree of c3(s), c4(s), c5(s), t = f(s) must

go to infinity as s goes to infinity. Similarly, pm03 = 0 implicitly determines a smooth monotone

increasing function s = g(t) with the domain t > 0. Moreover, the functions f and g are the same

by the symmetry of s, t in pm02 and pm03.

Now, we want to show that the implicit curves pm02 = 0 and pm03 = 0 have no intersecting

14



www.manaraa.com

points. That means the system of equations
pm02 = 0

pm03 = 0

pm02 = pm03

(2.10)

has no solution. Considering the difference of pm02 and pm03, we have

pm02 − pm03 = 2 (t− s)
(
t4 + 7 t3 + 3 st3 + 20 t2 + 4 s2t2 + 17 st2+

3 s3t+ 26 t+ 34 st+ 17 s2t+ 16 + 20 s2 + s4 + 7 s3 + 26 s
)

Then for s, t > 0, pm02 − pm03 = 0 if only if s = t. But for s = t > 0, pm02 = pm03 =

(16 + 64 s + 100 s2 + 68 s3 + 17 s4) which has no zeros. So pm02 = 0 and pm03 = 0 can not

be satisfied simultaneously, i.e. the two curves given by the two implicit functions have no in-

tersecting points. Furthermore, the curve (t, f(t)) is above the curve (f(s), s). Therefore, the

four implicit curves give rise to a region (Figure 3, B) described in theorem 2.1. The region

bounded by the four implicit curves in first quadrant is called central configuration region. For

any point in the central configuration region, there are four unique positive masses which make it

central with the center of mass at origin. (Note, the uniqueness is not true if the center of mass is

not fixed. The mass vector will admit one parameter u). This completes the proof of Theorem 2.1.]

Our investigation will now go into the change of the masses with respect to the positions.

The intersecting point O of the line m1 = 0 and m4 = 0 is (1.396812289, 1.396812289). The

intersecting point P of the line m1 = 0 and the curve m3 = 0 is (1.396812289, 2.807744118)

with the same first coordinate as O. By symmetry, the point Q is (2.807744118, 1.396812289).

For example, the point (1, 1) is out of the central configuration region for fixing center of mass at

origin. It gives the configuration x = (−2,−1, 1, 2) . By solving equation (2.4) with r = −1, u = 0,

the unique solution is [− 3168
5201 ,

9540
5201 ,

9540
5201 ,−

3168
5201 ], which is not positive. That is the configuration

x = (−2,−1, 1, 2) could not be a central configuration by fixing the center of mass at origin. We

will also show in the next section that the configuration x = (−2,−1, 1, 2) could not be a central

configuration even without fixing the center of mass.

Note that the central configuration region is symmetric along s = t. If s = t, we have m1 = m4

and m2 = m3. The different colors in figure 1 show that the heaviest mass of the four bodies
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changes as the change of the point in central configuration region. For example, when the point

is in the triangle 4POQ with s > t, m3 becomes the heaviest mass. As the point moves up while

t becomes larger with s > t, the heaviest mass m3 decreases and will equal the mass m1 on some

curve, and eventually m1 will become the heaviest mass.

We may intuitively think of m1,m4 as going to zero and m2,m3 going to infinity while s = t

goes to infinity because the outer two bodies travel much further than the inner two bodies do.

Hence the smaller the masses of the outer two bodies the faster they travel. However, this is not

the case. Both m1,m4 go to infinity as s = t goes to infinity, but the limit of m2,m3 goes to a

finite number 68 which is unexpected. Here we fix the center at the origin and get the symmetric

region in which the central configuration of collinear four bodies lies. It is natural to ask how the

center of mass affects the central configuration region. We will answer this question in the next

subsection.

2.2.3 Proof of Theorem 2.2

In this subsection, we will find the central configuration region without fixing the center of mass

in advance. For the reason previously given at the end of subsection 2.2.1, we can let r = −1. By

using symbolic computation of Matlab, we find the numerators and denominators of the masses.

They have the same positive denominators as given by

dm = 256 + 512 s+ 512 t+ s4t4 + 384 s2 + 16 s4 + 128 s3 + 384 t2 + 16 t4 + 128 t3 + 64 s3t2

+64 s2t3 + 4 s4t3 + 4 s4t2 + 4 s3t4 + 16 s3t3 + 4 s2t4 + 576 s2t+ 576 st2 + 896 st+

16 s4t+ 160 s3t+ 16 st4 + 160 st3 + 304 s2t2.

Furthermore, we find that the possible negative terms in each mass solution are the following.

pm1(t, u) = −16u− 16 + (−16u− 16) t+ (−4− 4u) t2 + (−4u+ 8) t3 + (−u+ 5) t4 + t5,

pm2(t, s, u) = 16 + 16u+ 48 s+ us4 + 56 s2 + s5 + 32 s3 + 24us2 + 32us+ 8us3 + 9 s4+(
16 + 40 s+ 2us3 + 24us+ 36 s2 + 2 s4 + 14 s3 + 12us2 + 16u

)
t+(

us2 + 4 + 4us+ 5 s2 + 4u+ 8 s+ s3
)
t2+(

−s2 − 6 s+ 2us+ 4u− 8
)
t3 + (−5 + u− 2 s) t4 − t5,

pm3(t, s, u) = 16− 16u− 24ut2 + 48 t+ t5 + 9 t4 + 32 t3 − t4u− 32ut− 8 t3u+ 56 t2+
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(
−2 t3u+ 14 t3 − 12ut2 − 24ut+ 16 + 40 t+ 36 t2 + 2 t4 − 16u

)
s+

(
−ut2 + t3 − 4ut+ 5 t2 + 8 t+ 4− 4u

)
s2+

(
−t2 − 4u− 8− 6 t− 2ut

)
s3 + (−u− 5− 2 t) s4 − s5,

pm4(s, u) = 16u− 16 + (16u− 16) s+ (−4 + 4u) s2 + (4u+ 8) s3 + (u+ 5) s4 + s5.

Let k1(t) = (t+ 2)2, k2(t, s) = (t+ s+ 2)2. The mass solutions of (2.4) are

m1(t, s, u) = k1(s)k2(t,s)s
2pm1(t,u)

dm ,

m2(t, s, u) = 4k1(t)s
2pm2(t,s,u)
dm ,

m3(t, s, u) = 4k1(s)t
2pm3(t,s,u)
dm ,

m4(t, s, u) = k1(t)k2(t,s)t
2pm4(s,u)

dm ,

(2.11)

which have the following relations:

m1(t, s, u) = m4(s, t,−u), m2(t, s, u) = m3(s, t,−u).

Then the central configuration region is the region on which pm1, · · · , pm4 are all positive.We

prove Theorem 2.2 by using the following Lemmas.

Lemma 2.1 The region in which m1 > 0,m4 > 0 for s > 0, t > 0 by choosing the proper u is

the infinite region G in figure 6 bounded by an implicit function h(t, s) = 0 far away from the origin.

Proof. Because pm1 is independent on s, the positivity of pm1 only depends on u and t. For each

fixed u, the number of sign changes of the coefficients of pm1 is at most one. More precisely, if

u > −1, the sign of polynomial pm1 changes only once. If u < −1, the coefficients of pm1 are

all positive. Therefore, pm1 is always positive for t > 0 while u < −1. When u = −1, we have

pm1 = 12 t3 + 6 t4 + t5 which is zero at t = 0 and positive for t > 0. By Descartes’ rule of sign,

there is exactly one positive root for any given u > −1. The equation pm1 = 0 implicitly defines

t as a function of u on u > −1. The curve is a smooth monotonically increasing curve by the

property of polynomial functions as shown in figure 4.

Another way show this by considering the sign of its first derivative. From pm1 = 0, it is easy to

solve for u, which is

u =
−4 t2 − 16 t− 16 + 8 t3 + t5 + 5 t4

16 t+ 16 + t4 + 4 t3 + 4 t2
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du

dt
=
t2
(
768 t+ 112 t3 + 576 + 416 t2 + t6 + 8 t5 + 24 t4

)
(16 t+ 16 + t4 + 4 t3 + 4 t2)2

which is always positive for t > 0.

Because u is the center of mass, u is a real value between x1 = −s − 1 and x4 = t + 1. In this

graph, m1 is positive for the points above the curve. For example, for u = 0, t ≥ 1.396812289.

For the same reasons, the implicit function pm4 = 0 has similar properties and the implicit graph

is given by figure 5.

Figure 4: m1 = 0

Figure 5: m4 = 0

18



www.manaraa.com

Therefore, the two equations pm1 = 0 and pm4 = 0 give us an implicit function of (t, s) by

eliminating u.

−4 t2 − 16 t− 16 + 8 t3 + t5 + 5 t4

16 + 16 t+ t4 + 4 t3 + 4 t2
+
−4 s2 − 16 s− 16 + 8 s3 + s5 + 5 s4

16 + 16 s+ s4 + 4 s3 + 4 s2
= 0

Because its denominator is always positive for positive s, t, the equation is equivalent to h(t, s) = 0

which defines an implicit function, where

h(t, s) = (−512− 512 t− 128 t2 + 64 t3 + 64 t4 + 16 t5) +
(
(−512− 512 t− 128 t2 + 64 t3

+64 t4 + 16 t5)
)
s+

(
(−128− 128 t− 32 t2 + 16 t3 + 16 t4 + 4 t5)

)
s2 +

(
(64 + 64 t+ 16 t2

+64 t3 + 28 t4 + 4 t5)
)
s3 +

(
(64 + 64 t+ 16 t2 + 28 t3 + 10 t4 + t5)

)
s4

+
(
(16 + 16 t+ 4 t2 + 4 t3 + t4)

)
s5 (2.12)

The function is symmetric on s, t, i.e. h(t, s) = h(s, t). Note that

(−512− 512 t− 128 t2 + 64 t3 + 64 t4 + 16 t5) =

= 4(−128− 128 t− 32 t2 + 16 t3 + 16 t4 + 4 t5) = 16 (t− 2)
(
t2 + 2 t+ 4

)
(t+ 2)2

The coefficients of s3, s4, s5 are all positive. By Descartes’ rule, for t ∈ (0, 2), the equation

h(t, s) = 0 gives rise to an implicit curve Γ. But for t ∈ (2,∞), equation has no positive solutions

because all terms in h(t, s) are positive. The implicit curve Γ of (t, s) is the curve in figure 6 which

divide the first quadrant into two parts, the region E and the unbounded region G.

Given any point (t, s) ∈ Γ, there is a unique u such that pm1 = pm4 = 0 because the implicit curve

pm1 = 0 is smooth and monotonically increasing. Now for any point (t0, s0) ∈ G, there exists

(t, s) ∈ Γ such that t < t0, s < s0. We can choose u to make pm1(t, u) = pm4(s, u) = 0. Therefore

pm1(t0, u) > 0 and pm4(s0, u) > 0. At any point (t0, s0) in open region G, pm1, pm4 could be

positive simultaneously for some u. By a similar argument, we can show that pm1, pm4 could not

be positive simultaneously in the region E for any u. This completes the proof of Lemma 1.

Remark 3: We give here an example of the previous lemma. Let the configuration x =

(−2,−1, 1, 2) correspond to (t, s) = (1, 1) ∈ E. In this case, we get m = [− 3168
5201 −

5904
5201 u,

9540
5201 +
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5436
5201 u,

9540
5201 −

5436
5201 u,−

3168
5201 + 5904

5201 u] by solving equation (2.4) under r = −1. Note that m1 > 0

implies u < 0 while m4 > 0 implies u > 0. Lemma 1 tells us the region E is not a central

configuration region but that region G could be. Here we restrict our regions in the first quadrant

of ts-plane. In fact, we will show that the open region G is a central configuration region. We

achieve this by use of the following lemmas.

Lemma 2.2 The implicit curve pm2 = 0 intersects the vertical line pm1 = 0 only at s = 0 for

Figure 6: C.C. Region

Figure 7: C.C. Region for fixed −1 ≤ u ≤ 1
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any u ≥ −1 in the first quadrant of ts-plane. The implicit curve pm3 = 0 intersects the horizontal

line pm4 = 0 only at t = 0 for any u ≤ −1 in the first quadrant of ts-plane.

proof. In the proof of Lemma 2.1, we know that pm1 = 0 gives rise to a vertical line for u > −1

and pm1 > 0 for u < −1. pm1 = 0 gives rise to the s-axis when u = −1. Solving for u from

pm1 = 0, we have

u =
−4 t2 − 16 t− 16 + 8 t3 + t5 + 5 t4

16 + 16 t+ t4 + 4 t3 + 4 t2
. (2.13)

Substituting u into pm2 = 0 and simplifying, we have

s
(
256 + 16 s4t+ · · ·+ 144 st5

)
16 + 16 t+ t4 + 4 t3 + 4 t2

= 0. (2.14)

The only solution is s = 0. So pm2 = 0 intersects pm1 = 0 only at s = 0 for any u > −1. We

complete the proof of the first part. We can similarly prove the second part.

Lemma 2.3 Given any u ≤ −1, the three equations pm2 = 0, pm3 = 0, pm4 = 0 give

rise to three implicit curves and the three implicit curves enclose a nonempty open central

configuration region B1 (shown in Figure 8). Given any −1 ≤ u ≤ 1, the four equations

pm1 = 0, pm2 = 0, pm3 = 0, pm4 = 0 give rise to four implicit curves and the four implicit

curves enclose a nonempty open central configuration region B2 (shown in Figure 7). Given any

1 ≤ u, the three equations pm1 = 0, pm2 = 0, pm3 = 0 give rise to three implicit curves and the

three implicit curves enclose a nonempty open central configuration region B3 (shown in Figure

8).

Proof. First, we show that pm2 = 0, pm3 = 0 give rise two smooth monotone increasing curves

enclosing an open region in which pm2 > 0, pm3 > 0 with the curve pm3 = 0 above the curve

pm2 = 0. In fact, let

c0(s, u) = 16+16u+48 s+us4+56 s2+s5+32 s3+24us2+32us+8us3+9 s4 = (s+ 2)4 (s+ 1 + u) ,

c1(s, u) = 16 + 40 s+ 2us3 + 24us+ 36 s2 + 2 s4 + 14 s3 + 12us2 + 16u = 2 (s+ 2)3 (s+ 1 + u) ,

c2(s, u) =
(
us2 + 4 + 4us+ 5 s2 + 4u+ 8 s+ s3

)
= (s+ 2)2 (s+ 1 + u) ,

c3(s, u) =
(
−s2 − 6 s+ 2us+ 4u− 8

)
= − (s+ 2) (s− 2u+ 4) ,

c4(s, u) = (−5 + u− 2 s) .
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then pm2(t, s, u) = c0(s, u) + c1(s, u)t+ c2(s, u)t2 + c3(s, u)t3 + c4(s, u)t4 − t5.

The zeros of the coefficients are s = −u− 1, s = −u− 1, s = −u− 1, s = 2u− 4, s = −5/2 + 1/2u

respectively. In us−plane, these linear functions of u and s divide the half plane (s > 0) into 4

parts, A1, · · · , A4 as indicated in figure 9.

Figure 8: C.C. Region for fixed 1 ≤ u and u ≤ −1

Figure 9: Change of the Sign
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For given u, s in any of A1, · · · , A4, the signs of the coefficients change at most once. More

precisely, all the coefficients have negative signs in region A1 and the coefficients only change sign

once in the other regions. By Descartes’ rule, pm2(t, s, u) = 0 has at most one positive zero for

given s > 0,and any u. Then pm2(t, s, u) = 0 gives rise to an implicit surface (the left surface in

figure 10) with s > 0, t > 0. Therefore pm2(t, s, u) = 0 gives rise to the implicit curve in figure 7

for given u (the curve pm2 = 0 in figure 7 is for u = 3/4). Using similar arguments for pm3 = 0

we can conclude that given u, pm2 = 0 and pm3 = 0 define two implicit curves in first quadrant

of ts-plane. Now we want to show the curve pm3 = 0 is always above pm2 = 0 for any given u (or

equivalently show that the surface pm3 = 0 is above the surface pm2).

Figure 10: The Surface of m2 = 0 and m3 = 0

From the proof of Lemma 2.1, for given u = 0, the curve pm3 = 0 is above the curve pm2 = 0.

The surface pm3 = 0 is above the surface pm2 = 0 if the surface pm3 = 0 doesn’t intersect with

the surface pm2 = 0 i.e., if the equation system
pm2(t, s, u) = 0

pm3(t, s, u) = 0

pm2(t, s, u) = pm3(t, s, u)

(2.15)

has no solution for t > 0, s > 0. In fact, from pm3 − pm2 = 0 we have u = −16t+···+s3t2

24t+···+8st2 .

Substituting u into pm2, we have pm2 = 256+896s+···+9s2t6

16+24s+···+t4 in which all terms are positive. So it is

23



www.manaraa.com

impossible that pm2 = 0 and pm3 = 0 simultaneously.

For any given u ≤ −1, pm1 > 0 for t > 0, s > 0 by Lemma 1. Also pm4 = 0 gives rise

to a horizontal line s = s0 with s0 ≥ 2 by Lemma 2.1. From Lemma 2.2, pm3 = 0 intersects

pm4 = 0 at t = 0. In addition, pm3 = 0 is above pm2 = 0. So the three implicit curves

pm2 = 0, pm3 = 0, pm4 = 0 enclose an open unbounded strip-like central configuration region B1

as indicated in figure 8. The region slides from infinity to s = 2 with one vertex on the s-axis

while u changes from negative infinity to −1.

For any given −1 < u < 1, pm1 = 0, pm4 = 0 give rise to two implicit straight line t = t0, s = s0

respectively with (t0, s0) ∈ Γ from Lemma 1. Then the four implicit curves pm1 = 0, pm2 =

0, pm3 = 0, pm4 = 0 enclose an open unbounded strip-like central configuration region B2 as

indicated in figure 7. The region slides with one vertex on Γ.

For any given u ≥ 1, pm4 > 0 for t > 0, s > 0 by lemma 2.1. Also pm1 = 0 gives rise to a vertical

line t = t0 with t0 ≥ 2 by Lemma 2.1. From Lemma 2, pm2 = 0 intersects pm1 = 0 at s = 0.

In addition pm3 = 0 is above pm2 = 0. So the three implicit curves pm1 = 0, pm2 = 0, pm3 = 0

enclose an open unbounded strip-like central configuration region B3 as indicated in figure 8. The

region slides from t = 2 to infinity with one vertex on the t-axis while u changes from 1 to infinity.

Remark 4: From Lemma 2.2 and Lemma 2.3, for given 0 < u < 1, the unique intersecting

point between pm1 = 0 and pm3 = 0 is above the unique intersecting point between pm1 = 0 and

pm4 = 0 because pm3 = 0 intersects pm4 = 0 at t = 0 and pm3 = 0 is monotonically increasing

(for example: P is above O in Figure 7 with u = 3/4). Similarly, the unique intersecting point

between pm4 = 0 and pm2 = 0 is to the right of the unique intersecting point between pm4 = 0

and pm1 = 0 (for example: Q is at the right of O in Figure 7 with u = 3/4). It follows that as u

changes continuously, the central configuration region is swept out continuously.

Lemma 2.4. For any point (t0, s0) in region G in figure 6, there exists at least one u such

that the corresponding configuration (−s0 − 1,−1, 1, t0 + 1) could become a central configuration

centered at u. Therefore, region G is a central configuration region.

Proof. Lemma 2.4 can be obtained from the proof of Lemma 3 because the central configuration

region B obtained in lemma 3 sweeps all the region G. Once (t0, s0) falls in a central configuration

region B which is obtained for a fixed u, then the configuration (−s0− 1,−1, 1, t0 +1) is a central

configuration by choosing proper positive masses centered at u. ]

Remark 5: The four lemmas complete the proof of theorem 2.2. For any given point (t0, s0)
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in region G, the configuration x = (−s0−1,−1, 1, t0 +1) could be a central configuration for some

center of mass u.

2.2.4 Proof of Theorem 2.3

For any given configuration x = (−s− 1,−1, 1, t+ 1) and center of mass u, we get the unique

mass solution m = m(x, u) in section 2. Given any x, if there exist u such that u(x) < u < ū(x),

then the configuration x is a central configuration with mass m(x, u) which is positive and centered

at u. Now we turn to prove the theorem 2.3. From Lemma 2.1 in section 2.2.3 we know that

there does not exist a positive mass making configuration x = (−s0 − 1,−1, 1, t0 + 1) central at

any point (t0, s0) ∈ E. Then the set {u|x forms a central configuration centered at u with positive

mass m(x, u)} is empty implying d(t0, s0) = 0.

From Lemma 2.4 in section 2.2.3, for each point (t0, s0) in the region G, there exist at least

one u0 such that (t0, s0) ∈ B, which is an open central configuration region corresponding to u0.

Because B is open, (t0, s0) is an interior point of B. Then for u in a small neighborhood of u0,

(t0, s0) is still in the central configuration region for those u. Note that the central configuration

changes continuously w.r.t. the change of center of mass u. So the small neighborhood is in the

set {u|x forms a central configuration centered at u with positive mass m(x,u)}. So d(t0, s0) > 0.

In order to show limt0→∞,s0→0 d(t0, s0) = 0, we need to show the central configuration region

moves with the almost the same speed as u moves. We also need to show that the slope of pm2 = 0

goes to infinity as t0 goes to infinity and as s0 goes to zero. In fact, from pm1 = 0, it is easy to

solve for u, which is

u =
−4 t2 − 16 t− 16 + 8 t3 + t5 + 5 t4

16 t+ 16 + t4 + 4 t3 + 4 t2

du

dt
=
t2
(
768 t+ 112 t3 + 576 + 416 t2 + t6 + 8 t5 + 24 t4

)
(16 t+ 16 + t4 + 4 t3 + 4 t2)2

.

As t goes to infinity, du
dt goes to 1.

The implicit derivative ds
dt in pm2 = 0 is

ds

dt
= −16 + · · · − 5 t4 + 4 t3u− 18 st2 + 10 s2t+ 2 s4 + 36 s2 − 3 s2t2

48 + · · ·+ 48us+ 4us3 + 8 s3t− 2 st3 + 3 s2t2

In order to consider the change of the slope of the curve pm2 = 0 as t goes to infinity and as s goes

to zero, we substitute u obtained above from pm1 = 0 into ds
dt and let s go to zero which gives us

ds

dt
|s→0 = 1/4

(
t5 + 6 t4 + 12 t3 + 88 t2 + 240 t+ 288

)
t2

9 t5 + 30 t4 + 44 t3 + 24 t2 + 48 t+ 32
≈
t2

36
for large t.
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So for small s0 and large t0, d(t0, s0) ≈ 36s0
t20

. Therefore limt0→∞,s0→0 d(t0, s0) = 0.

3 Regularization of Simultaneous Binary Collision

We consider the classical collinear four-body problem of celestial mechanics. Let xk ∈ R, k =

1, 2, 3, 4, denote the position of kth body on the line with mass mk > 0. Assume, without loss of

generality, that x1 ≤ x2 ≤ x3 ≤ x4, then the Newtonian system (1.1) for collinear four bodies is

mk
d2xk

dt2
=

∂U

∂xk
, k = 1, 2, 3, 4, (3.1)

and the Newtonian Potential U in (1.2) is

U =
∑

1≤j<i≤4

mimj

|xi − xj |
. (3.2)

The total energy

H =
∑

1≤i≤4

1
2
mi|ẋi|2 −

∑
1≤j<i≤4

mimj

|xi − xj |
(3.3)

is constant along a solution of (3.1).

We call the space of x = (x1, · · · , x4) ∈ R4 the space of positions. Let 4ij := {x ∈ R4, xi = xj}

and 4 :=
⋃

1≤j<i≤44ij . The potential function U , and consequently equation (3.1) are singular

on 4.

Let x(t) = (x1(t), · · · , x4(t)) be a solution of equation (3.1) defined on [t1, t2), and assume

that x(t) → L = (L1, · · · , L4) as t → t−2 . We say that x(t) has a singularity of collision at t = t2

if L ∈ 4. According to the locations of L in 4, the singularities of collision are divided into

the categories of (I) binary collisions, (II) simultaneous binary collisions, (III) triple collisions

and (IV) four-body (total) collisions [35]. In this section, we study a solution with singularity of

simultaneous binary collision(SBC), that is, the limit L of the position satisfies −∞ < L1 = L2 <

L3 = L4 <∞. Let us denote the set of L satisfying these restrictions as
∧

.

For better understanding of the behavior of the motion of the particles in a neighborhood of a

collision, we make a change of coordinates and of time scale. If, in the new coordinates, the orbits

which approach collision can be extended across the collision in a smooth manner with respect to

the new time scale, we say that the collision orbits have been regularized. The regularization is of

class Cn, n ≥ 0, or analytic if each collision orbit of the transformed differential equations is Cn
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or analytic, respectively, as a function of the new time scale in a neighborhood of collision. This

type of regularization goes back, in particular, to Sundman [43] in his studies of collisions in the

three-body problem (see also [37]).

It is worth to mention that the above regularization is just to extend each individual collision

orbit itself across collision. A related question is about the smoothness of the flow with respect

to initial conditions in a neighborhood of a collision orbit. This defines a different type of regu-

larization if the flow also varies smoothly with respect to initial conditions in a neighborhood of

a collision orbit. This type of regularization was first studied by Easton [10], and later by many

other people, see Regina Martinez and Carles Simó [21], R. McGehee [36] etc. Many other works

can be found from the reference of these papers.

In this section we construct coordinate transforms in new time scale that remove the singular-

ities of simultaneous binary collisions in collinear four-body problem without any assumption on

mass. The regularization is at least of class C2. Based on the results of regularization of SBC in

this section, the behavior of the motion is studied for the motion acrossing collisions. The exis-

tence of a family of periodic solutions with simultaneous binary collision is proved in subsection

3.2. More periodic solutions involving single binary collision and SBC are constructed in section

3.3.

We now proceed to the next subsection and state our results more precisely.

3.1 Regularization

Let us now consider equation (3.1) for the collinear four-body problem assuming x1 ≤ x2 ≤ x3 ≤

x4. Without loss of generality, we also put the center of mass at the origin which implies

4∑
k=1

mkxk = 0. (3.4)

Related to (3.4), we have
4∑

k=1

mk
dxk

dt
= 0. (3.5)

These help in cutting the dimension of the phase space down by two. Let

u1 = x2 − x1, u2 = x4 − x3, u3 =
m1x1 +m2x2

m1 +m2
(3.6)

and

K31 =
1

x3 − x1
=

ω1

ω2u1 − ω3u2 − ω4u3
(3.7)
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K41 =
1

x4 − x1
=

ω1

ω2u1 + ω5u2 − ω4u3
(3.8)

K32 =
1

x3 − x2
=

ω1

−ω6u1 − ω3u2 − ω4u3
(3.9)

K42 =
1

x4 − x2
=

ω1

−ω6u1 + ω5u2 − ω4u3
(3.10)

where ω1 = (m1 +m2)(m3 +m4), ω2 = m2(m3 +m4), ω3 = m4(m1 +m2), ω4 = (m1 +m2)(m1 +

m2 +m3 +m4), ω5 = m3(m1 +m2) and ω6 = m1(m3 +m4).

Then equation (3.1) reduces to an ordinary differential equation system with six independent

variables ~p1 = (u1, u2, u3, v1, v2, v3),

du1

dt
= v1,

dv1
dt

= −m1 +m2

u2
1

+m3(K2
32 −K2

31) +m4(K2
42 −K2

41);

du2

dt
= v2,

dv2
dt

= −m3 +m4

u2
2

+m1(K2
31 −K2

41) +m2(K2
32 −K2

42); (3.11)

du3

dt
= v3,

dv3
dt

=
m1m3

m1 +m2
K2

31 +
m2m3

m1 +m2
K2

32 +
m1m4

m1 +m2
K2

41 +
m2m4

m1 +m2
K2

42.

~u = (u1, u2, u3) ∈ R2 × R− is now the space of positions and
∧

= {u1 = u2 = 0, u3 ∈ R−}

is the singular set for simultaneous binary collisions. Kij , i = 3, 4, j = 1, 2 are bounded on the

singular set
∧

.

It is verified that the total energy (3.3) becomes,

Ĥ =
(β1v

2
1 + β2v

2
2 + β3v

2
3)

2(m1 +m2)(m3 +m4)
− (

m1m2

u1
+
m3m4

u2
+m1m3K31 +m1m4K41 +m2m3K32 +m2m4K42)

(3.12)

where β1 = m1m2(m3 +m4), β2 = m3m4(m1 +m2), β3 = (m1 +m2)2(m1 +m2 +m3 +m4).

One of the main results of this section reads as follows.

Theorem 3.1. Any simultaneous binary collision orbit of collinear four body problem can be

extended at least C1 across
∧

with respect to the new time scale after a change of coordinates and

time scale.

Furthermore, we also prove our extension is at least C2 in theorem . The following lemma 3.1

and its proof are from the work of Belbruno [2].
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Lemma 3.1. Let ~u = ~u(t), t ∈ [t1, t2) denote a simultaneous binary collision orbit encounter-

ing
∧

, where t = t2 corresponds to collision, then

lim
t→t2

duk

dt
= lim

t→t2
vk(t) = ∞, k = 1, 2 (3.13)

lim
t→t2

u1(t)v2
1(t) = 2(m1 +m2), lim

t→t2
u2(t)v2

2(t) = 2(m3 +m4), (3.14)

lim
t→t2

u1(t)v1(t) = 0, lim
t→t2

u2(t)v2(t) = 0, (3.15)

and

lim
t→t2

u1(t)
u2(t)

= α, lim
t→t2

v1(t)
v2(t)

= α, (3.16)

where α =
(

m1+m2
m3+m4

) 1
3
.

Proof. System (3.11) implies

d2u1

dt2
= −m1 +m2

u2
1

+G1,
d2u2

dt2
= −m3 +m4

u2
2

+G2, (3.17)

where G1 = m3(K2
32 − K2

31) + m4(K2
42 − K2

41) and G2 = m1(K2
31 − K2

41) + m2(K2
32 − K2

42) are

bounded when t is close to t2. Multiplying (3.17) by du1
dt ,

du2
dt respectively, yields(

du1

dt

)2

=
2(m1 +m2)

u1
+ G̃1,

(
du2

dt

)2

=
2(m3 +m4)

u2
+ G̃2

where G̃1 and G̃2 are also bounded when t is close to t2. Thus letting uk(t) → 0 as t→ t2, k = 1, 2,

we prove that limt→t2
du1
dt = limt→t2 v1(t) = ∞. and limt→t2

du2
dt = limt→t2 v2(t) = ∞. Multiplying

by u1, u2 respectively, the above equations become

u1v
2
1 = 2(m1 +m2) + u1G̃1, u2v

2
2 = 2(m3 +m4) + u2G̃2.

Then we have

lim
t→t2

u1(t)v2
1(t) = 2(m1 +m2), lim

t→t2
u2(t)v2

2(t) = 2(m3 +m4).

Consequently,

lim
t→t2

u1(t)v1(t) = 0, lim
t→t2

u2(t)v2(t) = 0.

By making use of the fact that both u1, u2 tend to 0 monotonically and the results above, we have

limt→t2
u1(t)
u2(t)

= α, where α =
(

m1+m2
m3+m4

)1/3

. We also have

lim
t→t2

v1(t)
v2(t)

= lim
t→t2

u̇1(t)
u̇2(t)

= lim
t→t2

u1(t)
u2(t)

= α. ]
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3.1.1 The Proof of Theorem 3.1

Let ~u = ~u(t) denote a simultaneous binary collision orbit encountering
∧

when t = t2, then in a

sufficiently small open deleted neighborhood of t = t2, ~u(t) performs no collisions [2]. Therefore

we can assume ~p1 = (u1, · · · , v3) is a solution of (3.11) performing no collisions for t ∈ [t1, t2) and

performing a simultaneous binary collision when t→ t−2 . We will construct coordinate transform

with a new time scale τ , such that the orbit under the new coordinate can be regularized. Let

δ > 1 and 0 < ρ < 1 be fixed. We only consider solutions of equations (3.11) in Uδ,ρ, where

Uδ,ρ = {~p1 ∈ (R)2+ × R− × R3 : u1, u2 < ρ;−δ < u3 < −δ−1}

We are now ready to introduce regularization variables by a Levi-Civita transformation and a

time scale. Let ~p2 = (ξ1, ξ2, ξ3, η1, η2, η3) be the new phase variables with the new time variable

as τ .

u1 =
ξ21
2
, u2 =

ξ22
2
, u3 = −ξ

2
3

2
, v1 =

η1
ξ1
, v2 =

η2
ξ2
, v3 =

η3
ξ3

(3.18)

and rescale time by

dt = (ξ21 + ξ22)dτ (3.19)

One verifies that (3.11) becomes
dξ1
dτ

=
ξ21 + ξ22
ξ21

η1, (3.20)

dξ2
dτ

=
ξ21 + ξ22
ξ22

η2 (3.21)

dξ3
dτ

= − (ξ21 + ξ22)
ξ23

η3 (3.22)

dη1
dτ

=
(η2

1 − 4(m1 +m2))
ξ21

ξ1(ξ21 + ξ22)
ξ21

+
(
m3(K2

32 −K2
31) +m4(K2

42 −K2
41)
)
ξ1(ξ21 + ξ22) (3.23)

dη2
dτ

=
(η2

2 − 4(m3 +m4))
ξ22

ξ2(ξ21 + ξ22)
ξ22

+
(
m1(K2

31 −K2
41) +m2(K2

32 −K2
42)
)
ξ2(ξ21 + ξ22) (3.24)

dη3
dτ

=
(

m1m3

m1 +m2
K2

31 +
m2m3

m1 +m2
K2

32 +
m1m4

m1 +m2
K2

41 +
m2m4

m1 +m2
K2

42

)
ξ3(ξ21 + ξ22) +

(ξ21 + ξ22)
ξ33

η2
3

(3.25)

where K31,K32,K41,K42 are obtained by substituting (3.18) into (3.7)-(3.10), which are bounded

and smooth on
∧

.

Derivations for equations (3.20) to (3.25): For the first equation (3.20) we differentiate

ξ21 = 2u1 to obtain
dξ1
dτ

=
1
ξ1

du1

dt

dt

dτ
=

1
ξ1

η1
ξ1

(ξ21 + ξ22) =
ξ21 + ξ22
ξ21

η1.
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dη1
dτ

=
d

dτ
(ξ1v1) =

dv1
dτ

ξ1 + v1
dξ1
dτ

=
(
−4(m1 +m2)

ξ41
+m3(K2

32 −K2
31) +m4(K2

42 −K2
41)
)
ξ1(ξ21 + ξ22) +

η2
1(ξ21 + ξ22)

ξ31

=
(η2

1 − 4(m1 +m2))
ξ21

ξ1(ξ21 + ξ22)
ξ21

+
(
m3(K2

32 −K2
31) +m4(K2

42 −K2
41)
)
ξ1(ξ21 + ξ22)

dη3
dτ

= ξ3
dv3
dt

dt

dτ
+ v3

dξ3
dτ

=
(

m1m3

m1 +m2
K2

31 +
m2m3

m1 +m2
K2

32 +
m1m4

m1 +m2
K2

41 +
m2m4

m1 +m2
K2

42

)
ξ3(ξ21 + ξ22) +

(ξ21 + ξ22)
ξ33

η2
3

Other equations can be obtained in a similar way.

The energy (3.12) becomes

Ĥ = (η2
1−4(m1+m2))

ξ2
1

m1m2
2(m1+m2)

+ η2
2−4(m3+m4))

ξ2
2

m3m4
2(m3+m4)

+η2
3

ξ2
3

β3
2(m1+m2)(m3+m4) − (m1m3K31 +m1m4K41 +m2m3K32 +m2m4K42)

(3.26)

where β3 = (m1 +m2)2(m1 +m2 +m3 +m4).

Remark: We choose ξ3 = −
√
−2u3 the negative branch of equation (3.18). The set {ξ1 = ξ2 =

0, ξ3 < 0} is the singular set corresponding to
∧

the singular set for the simultaneous binary

collisions. K31,K32,K41,K42 are bounded smooth functions on the singular set.

Let

Vδ,ρ = {~p2 = (ξ1, ξ2, ξ3, η1, η2, η3) : ξ21 , ξ
2
2 < 2ρ,−(2δ)1/2 < ξ3 < −(2δ−1)1/2}

be the correspondence of Uδ,ρ in phase space ~p1. We will study the solutions of (3.20)-(3.25) in Vδ,ρ.

Recall that ~p1 = (u1, u2, u3, v1, v2, v3) is a solution in Uδ,ρ defined in [t1, t2) and assume that

~p1 →
∧

as t→ t−2 . Let

τ(t) = τ0 +
∫ t

t1

1
2(u1(s) + u2(s))

ds (3.27)

Theorem 3.2. Let ~p1(t), t ∈ [t1, t2) be a solution of equation (3.11) in Uδ,ρ with simultaneous

binary collision at t = t2, in other words, ~p1(t) →
∧

as t→ t−2 . Let τ(t) be defined by (3.27) and

~p2(τ), τ ∈ [τ1, τ2) be the functions obtained from ~p1(t) through (3.18). Then

(1) ~p2(τ) is a solution of equations (3.20)-(3.25) in [τ1, τ2);

(2) τ2 := τ(t2) <∞, and ~p2(τ2) := limτ→τ2 ~p2(τ) is well defined; and

(3) the solution ~p2 of (3.20)-(3.25) can be at least C1 smoothly extended through τ2.
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Proof. (1) This follows from the derivations of equations. We notice that (3.18) allows

different ways to convert ~p1(t) to ~p2(τ) because ξk, k = 1, 2, 3 can have different signs. This is a

well known characteristic of Levi-Civita variables. For definiteness, let us choose the positive sign

ξk =
√

2uk, k = 1, 2 and negative sign ξ3 = −
√
−2u3.

(2) It is well know that when a collision singularity occurs at t2,

u1(t) + u2(t) ∼ (t− t2)2/3.

Then it follows that

τ2 = τ0 +
∫ t2

t1

1
2(u1(t) + u2(t))

dt <∞.

It is easy to show that v3(t) and uk(t) → a definite limit as t → t−2 , which we denote by

v3(t2), uk(t2), k = 1, 2, 3. Now for ~p2(τ2) : we let ξk(τ2) =
√

2uk(t2), k = 1, 2 and ξ3(τ2) =

−
√
−2u3(t2), η3(τ2) = ξ3v3(t2). By the assumption, ξ1(τ2) = 0, ξ2(τ2) = 0.

From above, we have

lim
τ→τ2

η2
1(τ) = lim

t→t2
2u1v

2
1 = 4(m1 +m2),

and

lim
τ→τ2

η2
2(τ) = lim

t→t2
2u2v

2
2 = 4(m3 +m4),

from which it follows that η1(τ2) = −2
√
m1 +m2, η2(τ2) = −2

√
m3 +m4. They are negative

because we have chosen positive sigh for ξk(τ2), k = 1, 2. Therefore ~p2(τ2) := limτ→τ2 ~p2(τ) is well

defined.

Before we prove (3), we need the following lemma 3.2.

Lemma 3.2. Let ~p1(t) be a solution of (3.11). ~p2(τ) is obtained from ~p1(t) as above. Then

lim
τ→τ2

ξ21(τ)
ξ22(τ)

= α (3.28)

lim
τ→τ2

ξ21(τ) + ξ22(τ)
ξ22(τ)

= 1 + α (3.29)

lim
τ→τ2

ξ21(τ) + ξ22(τ)
ξ21(τ)

= 1 +
1
α

(3.30)

lim
τ→τ2

η2
1(τ)

m1+m2

η2
2(τ)

m3+m4

= 1 (3.31)
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Proof. By directional computation and lemma 3.1, we can check that

lim
τ→τ2

ξ21(τ)
ξ22(τ)

= lim
t→t2

u1

u2
= α,

lim
τ→τ2

ξ21(τ) + ξ22(τ)
ξ22(τ)

= lim
τ→τ2

(1 +
ξ21(τ)
ξ22(τ)

) = 1 + α

lim
τ→τ2

ξ21(τ) + ξ22(τ)
ξ21(τ)

= lim
τ→τ2

(1 +
ξ22(τ)
ξ21(τ)

) = 1 +
1
α

lim
τ→τ2

η2
1(τ)

m1+m2

η2
2(τ)

m3+m4

= lim
t→t2

2u1v
2
1(t)(m3 +m4)

2u2v2
2(t)(m1 +m2)

= 1. ]

The proof of (3). From (3.12), we have

(η2
1−4(m1+m2))

ξ2
1

m1m2
2(m1+m2)

+ η2
2−4(m3+m4))

ξ2
2

m3m4
2(m3+m4)

= Ĥ −
(

(β3η2
3)

2ξ2
3(m1+m2)(m3+m4)

−(m1m3K31 +m1m4K41 +m2m3K32 +m2m4K42)) .
(3.32)

Because Ĥ is a constant along any solution ~p2(τ), the right side in (3.32) is bounded in [τ1, τ2)

and the limit of the right side in (3.32) is finite defined by L as τ → τ2, i.e.,

lim
τ→τ2

(η2
1 − 4(m1 +m2))

ξ21

m1m2

2(m1 +m2)
+

(η2
2 − 4(m3 +m4))

ξ22

m3m4

2(m3 +m4)
= L.

In addition,

lim
τ→τ2

ξ21(τ)
ξ22(τ)

= α, lim
τ→τ2

ξ1(τ) = 0, lim
τ→τ2

ξ2(τ) = 0, lim
τ→τ2

η2
1(τ)

m1+m2

η2
2(τ)

m3+m4

= 1,

and

lim
τ→τ2

(η2
1−4(m1+m2))

ξ2
1

m1m2
2(m1+m2)

η2
2−4(m3+m4))

ξ2
2

m3m4
2(m3+m4)

=
m1m2(m3 +m4)
αm3m4(m1 +m2)

lim
t→t2

u1v
2
1 − 2(m1 +m2)

u2v2
2 − 2(m3 +m4)

=
m1m2(m3 +m4)
m3m4(m1 +m2)

lim
t→t2

v2
1 −

2(m1+m2)
u1

v2
2 −

2(m3+m4)
u2

=
m1m2(m3 +m4)
m3m4(m1 +m2)

lim
t→t2

2v1 dv1
dt + 2(m1+m2)

u2
1

2v2 dv2
dt + 2(m3+m4)

u2
2

=
m1m2(m3 +m4)
m3m4(m1 +m2)

lim
t→t2

2(m1+m2)
u2

1
(−v1 + 1)

2(m3+m4)
u2

2
(−v2 + 1)

=
m1m2

α2m3m4
lim
t→t2

(−v1 + 1)
(−v2 + 1)

=
m1m2

αm3m4
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Then (η2
1−4(m1+m2))

ξ2
1

and (η2
2−4(m3+m4))

ξ2
2

are well defined when τ → τ2 by making use of (3.32),

and (η2
1−4(m1+m2))

ξ2
1

ξ1(ξ
2
1+ξ2

2)

ξ2
1

and (η2
2−4(m3+m4))

ξ2
2

ξ1(ξ
2
1+ξ2

2)

ξ2
2

in (3.23)-(3.25) go to zero as τ → τ2. In

fact, we can prove this by direct computation as follows:

lim
τ→τ2

(η2
1 − 4(m1 +m2))

ξ21

ξ1(ξ21 + ξ22)
ξ21

= lim
τ→τ2

(η2
1 − 4(m1 +m2))

ξ1
lim

τ→τ2

(ξ21 + ξ22)
ξ21

= (1 +
1
α

) lim
t→t2

u1v
2
1 − 2(m1 +m2)√

2u1
= (1 +

1
α

) lim
t→t2

u1G̃1√
2u1

= 0.

According to lemma 3.2, it is clear that the functions on the right-hand side of (3.20)-(3.25) have

a well-defined finite limit as τ → τ2 along ~p2(τ) given in the above. Moreover, (ξ1(τ), ξ2(τ), ξ3(τ))

intersects the simultaneous binary collision set
∧

= {ξ1 = 0, ξ2 = 0, ξ3 < 0} transversally, because

letting τ → τ2 in (3.20), (3.21) implies

lim
τ→τ2

dξ1
dτ

= lim
τ→τ2

ξ21 + ξ22
ξ21

η1 = 2(1 +
1
α

)
√
m1 +m2 > 0,

lim
τ→τ2

dξ2
dτ

= lim
τ→τ2

ξ21 + ξ22
ξ22

η2 = 2(1 + α)
√
m3 +m4 > 0.

Thus, (ξ1(τ), ξ2(τ), ξ3(τ)) can be extended across
∧

. The solution ~p2(τ) = (ξ1(τ), ξ2(τ), ξ3(τ),

η1(τ), η2(τ), η3(τ)) can be extended for τ > τ2 by solving the differential equations (3.20)-(3.25)

with initial condition ~p(τ) = ~p2(τ2) when τ = τ2. The vector field given by (3.20)-(3.25) is clearly

continuous at τ = τ2 and therefore, the components ξ1(τ), ξ2(τ), ξ3(τ), η1(τ), η2(τ), η3(τ) are con-

tinuously differentiable functions of τ when τ = τ2. So the singularity of simultaneous binary

collision in equation (3.11) is removed by transferring to equation (3.20)-(3.25). This concludes

the proof of theorem 3.2. which yields the proof of theorem 3.1. ]

3.1.2 C2 Regularization of the Simultaneous Binary Collisions

Furthermore, we even can prove that the regularization is C2 in theorem 3.3.

Theorem 3.3. The equations (3.20)-(3.25) give rise to a C2 extension of ~p2(τ) with respect to τ

at ~p2(τ2) the simultaneous binary collision.

Proof. Let F (τ) = ξ1(τ)
ξ2(τ) . Then F (τ2) = α1/2. From equations (3.20)-(3.25) and lemma 3.2,

we have at τ = τ2,

dξ1
dτ

= (1 + α−1)(−2
√
m1 +m2),

dξ2
dτ

= (1 + α)(−2
√
m3 +m4),

dη1
dτ

= 0,
dη2
dτ

= 0.
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lim
τ→τ2

dF

dτ
= lim

τ→τ2

dξ1
dτ ξ2 − ξ1

dξ2
dτ

ξ22
= lim

τ→τ2
(1 + F−2)

η1 − F 3η2
ξ2

= (1 + α−2) lim
τ→τ2

dη1
dτ − F 3 dη2

dτ − 3F 2η2
dF
dτ

dξ2
= −3α−1/2 lim

τ→τ2

dF

dτ

So limτ→τ2
dF
dτ = 0 and

lim
τ→τ2

d2ξ1
dτ2

= lim
τ→τ2

d((1 + F−2)η1)
dτ

= lim
τ→τ2

(1 + F−2)
dη1
dτ

+ lim
τ→τ2

(1− 2F−3 dF

dτ
)η1 = −2

√
m1 +m2.

Similarly, we can prove the limits of the second derivative of ξ1(τ), ξ2(τ), ξ3(τ), η1(τ), η2(τ), η3(τ)

exist at τ = τ2. Therefore the second derivatives are continuously differentiable functions of τ

when τ = τ2. The extension of the simultaneous collision orbit is C2. ]

3.2 Periodic Solutions with SBC

Let us recall our notation. x1, x2, x3, x4 are the positions of collinear four body problem with the

center of mass at origin, i.e. (3.4) holds. u1 = x2 − x1 is the difference of the first two bodies

and u2 = x4 − x3 is the difference of the last two bodies. u3 = m1x1+m2x2
m1+m2

is the center of mass

of the first two bodies. vi are the derivatives corresponding to ui, i = 1, 2, 3. Furthermore, we

have a new coordinates and time scale given by (3.18) and (3.19).
∧

= {x1 = x2, x3 = x4, x2 6=

x3} = {u1 = u2 = 0, u3 < 0} = {ξ1 = ξ2 = 0, ξ3 6= 0} are the sets of simultaneous binary collision

in the respective coordinates. In this section we always assume that x = (x1, x2, x3, x4) be a

simultaneous binary collision solution which is defined in t ∈ [t1, t2) encountering with singular

set
∧

at t = t2. ~p1(t) = (u1(t), u2(t), u3(t), v1(t), v2(t), v3(t)) is obtained by transformation (3.6)

and ~p2(τ) = (ξ1(τ), ξ2(τ), ξ3(τ), η1(τ), η2(τ), η3(τ)) is obtained by transformation (3.18) and new

time scale (3.18). By theorem 3.2 and theorem 3.3, ~p2(τ) is a C2 solution of equation (3.20)-(3.25)

without singularity at τ = τ2. Furthermore, there exist τ4 > τ2, such that the behavior of the

extension of ~p2(τ) can be described by time reverse in (τ2, τ4) as follows.

3.2.1 Time Reverse Extension of Simultaneous Binary Collision

Theorem 3.4. Suppose that ~p2(τ) = (ξ1, ξ2, ξ3, η1, η2, η3) is defined as a simultaneous binary

collision solution of (3.20)-(3.25) in (τ1, τ2) and is extended to (τ1, τ3) in theorem 3.2, where
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τ1 < τ2 < τ3. Let ~p3(τ) = (ξ̃1, ξ̃2, ξ̃3, η̃1, η̃2, η̃3) denote as follows,

ξ̃1(τ) =

 ξ1(τ) τ1 < τ ≤ τ2,

−ξ1(2τ2 − τ) τ2 < τ < τ4.
(3.33)

ξ̃2(τ) =

 ξ2(τ) τ1 < τ ≤ τ2,

−ξ2(2τ2 − τ) τ2 < τ < τ4.
(3.34)

ξ̃3(τ) =

 ξ3(τ) τ1 < τ ≤ τ2,

ξ3(2τ2 − τ) τ2 < τ < τ4.
(3.35)

η̃1(τ) =

 η1(τ) τ1 < τ ≤ τ2,

η1(2τ2 − τ) τ2 < τ < τ4.
(3.36)

η̃2(τ) =

 η2(τ) τ1 < τ ≤ τ2,

η2(2τ2 − τ) τ2 < τ < τ4.
(3.37)

η̃3(τ) =

 η3(τ) τ1 < τ ≤ τ2,

−η3(2τ2 − τ) τ2 < τ < τ4.
(3.38)

where τ4 = min{2τ2 − τ1, τ3}. Then ~p3(τ) = ~p2(τ) for τ ∈ (τ1, τ4).

Proof. We only need to verify that the extension ~p3(τ) of ~p2(τ) also satisfies the differential

equations (3.20)-(3.25) in (τ1, τ4) and the smoothness ~p3(τ) at τ = τ2.

For τ1 < τ ≤ τ2, ~p3(τ) = ~p2(τ) then ~p3(τ) obviously satisfies the differential equations (3.20)-

(3.25). For τ2 < τ < τ4,
dξ̃1
dτ

=
d(−ξ1(2τ2 − τ))

dτ
=
dξ1
dτ

∣∣∣∣
2τ2−τ

=
(ξ1(2τ2 − τ))2 + (ξ22(2τ2 − τ))2

(ξ1(2τ2 − τ))2
η1(2τ2 − τ) =

ξ̃21 + ξ̃22

ξ̃21
η̃1.

Because ξ1(τ2) = 0, the time reverse extension ξ̃1 of ξ1 is continuously differentiable at τ2. ξ1

across the singular set because the derivative of ξ1 at τ2 is not zero. In fact, it is negative. The

figure 11 illustrates the extension for ξ1.

For τ2 < τ < τ4, because dη1
dτ |τ2 = 0 and

dη̃1
dτ

=
d(η1(2τ2 − τ))

dτ
= −dη1

dτ
|2τ2−τ
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=
(η̃2

1 − 4(m1 +m2))
ξ̃21

ξ̃1(ξ̃21 + ξ̃22)
ξ̃21

+
(
m3(K2

32 −K2
31) +m4(K2

42 −K2
41)
)
ξ̃1(ξ̃21 + ξ̃22),

where Kij only involve square terms ξ2i , the time reverse extension η̃1 of η1 also satisfies the dif-

ferential equation (3.23). The figure 12 is an example of η̃1.

The proof of extension ξ̃2, η̃3 and ξ̃3, η̃2 is similar to the proof of extension ξ̃1 and η̃1 respectively.

Figure 11: Extension of ξ1 to ξ̃1

Figure 12: Extension of η1 to η̃1
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So ~p3(τ) is also a solution of differential equation (3.20)-(3.25) and it is the same as ~p2(τ) when

τ ≤ τ2. By the uniqueness theorem of ordinary differential equations, ~p3(τ) must equal ~p2(τ) for

τ ∈ (τ1, τ4). ]

3.2.2 Behavior of SBC at the Singular Set

Now we are going to describe the behavior of the simultaneous binary collision solution when it is

closing to and at the singular set
∧

in the original coordinate.

Theorem 3.5. Let x(t) = (x1(t), x2(t), x3(t), x4(t)) be the extended simultaneous binary collision

solution of (3.1) by converting the C2 solution ~p3(τ) into original system. Then the solution x(t)

has the following properties.

(a) x is defined in t ∈ [t1, t4], where t4 = t(τ4) and t1 < t2 < t4 ≤ 2t2 − t1. x encounters with

singular set
∧

when t = t2.

(b) Let C1 = m1x1+m2x2
m1+m2

be the center of mass of m1,m2 and C2 = m3x3+m4x4
m3+m4

be the center

of mass of m3,m4. Then

lim
t→t2

C1

C2
= −m3 +m4

m1 +m2
,

where C1 < 0 and C2 > 0 are both finite.

(c) The ratio of velocity dxi

dt and dxi+1
dt approaches a finite number as t → t2, where i = 1, 3,

more precisely, limt→t2
dxi

dt /
dxi+1

dt = −mi+1
mi

. The negative sign implies that the velocities of colli-

sion pairs are in opposite direction as t → t2 , which is independent of the initial positions and

the initial velocities.

(d) The ratio of the distance u1 = x2 − x1 and the distance u2 = x4 − x3 is determined by

their mass ratio, more precisely, limt→t2
u1
u2

=
(

m1+m2
m3+m4

) 1
3
. The ratio of their velocities is also

determined by their mass ratio, i.e. limt→t2
du1/dt
du2/dt =

(
m1+m2
m3+m4

) 1
3
.
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(e) In the original time scale, the velocities are unbounded, i.e., limt→t2
dxi

dt = ∞. But in the

new time scale, the velocities are bounded and limτ→τ2
dxi

dτ = 0, where i = 1, · · · , 4.

Proof. (a) is directly from the theorem 3.2 and theorem 3.4. By making using of the center

of mass at origin, it is easy to prove (b). (c) is directly from the equation (3.1) and L’Hopital’s

rule, in fact,

lim
t→t2

dx1
dt

dx2
dt

= lim
t→t2

d2x1
dt2

d2x2
dt2

= lim
t→t2

∑
j 6=1

mj(xj−x1)
|xj−x1|3∑

j 6=2
mj(xj−x2)
|xj−x2|3

= −m2

m1
,

and limt→t2

dx3
dt

dx4
dt

= −m4
m3
. (d) is directly from lemma 3.1. Now we turn to prove (e).

In the new coordinates and new time scale, as the solution ~p2(τ) approaches the singular set
∧

,

we already have, from the proof of theorem 3.2 and theorem 3.4,

ξ1(τ2) = 0, ξ2(τ2) = 0, ξ3(τ2) < 0, η1(τ2) = −2
√
m1 +m2, η2(τ2) = −2

√
m3 +m4

and η3(τ2) is finite. So in the new time scale, it slows down the motion to a finite speed (ηi are

related to the velocity of the particles). Recall that du1
dt →∞ as t goes to t2, but u1 = ξ2

1
2 implies

du1

dτ
= ξ1

dξ1
dτ

= 0 at τ = τ2.

From which we have,
d(x2 − x1)

dτ
=
dx2

dτ
− dx1

dτ
= 0 at τ = τ2.

From 2 above, we have

lim
τ→τ2

dx2
dτ
dx1
dτ

= lim
t→t2

dx2
dt

dt
dτ

dx1
dt

dt
dτ

= lim
t→t2

dx2
dt

dx1
dt

= −m2

m1

Therefore,
dx2

dτ
= 0 and

dx1

dτ
= 0 at τ = τ2.

η3(τ) = ξ3(τ)v3(τ) = ξ3(τ)
m1

dx1
dτ +m2

dx2
dτ

m1 +m2
= 0 at τ = τ2.

We complete the proof of theorem 3.5. ]

3.2.3 Construction of Periodic Solutions

Using the above properties in subsection 3.2.2, we construct a family of periodic solutions of the

collinear four body problem with simultaneous binary collisions.
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Let x0 = (x0
1, x

0
2, x

0
3, x

0
4) denote the initial positions of collinear four body problem with −∞ <

x0
1 < x0

2 < 0 < x0
3 < x0

4 < ∞. We assume that x0 possesses symmetries on positions and

masses, i.e. x0
1 = −x0

4, x
0
2 = −x0

3 and m1 = m4,m2 = m3. Without loss of generality, let

s = x0
2 − x0

1 = x0
4 − x0

3 > 0, x0
2 = −1, x0

3 = 1, and m1 = m4 = m,m2 = m3 = 1

Theorem 3.6. If s and m fall into the region of s2(s+2)2

16(1+s) < m in the first quadrant of sm-plane

(see Figure 13), then the orbit by releasing the four bodies with zero velocity at x0 is a periodic

orbit with simultaneous binary collisions .

Figure 13: SBC Region

Before we prove theorem 3.6, we prove the following lemma. Let x = (x1, x2, x3, x4) denote

the positions of our four particles on the line with positive mass (m1,m2,m3,m4). We assume,

without loss of generality, that x1 ≤ x2 ≤ x3 ≤ x4 and the center of mass is at origin.

Lemma 3.3 (Periodic Solution with Simultaneous Binary Collision) Let x(t) = (x1(t), x2(t),

x3(t), x4(t)) be a smooth solution of (3.1) in the interval [t0, t2) with initial condition x(0) = x0 =

(x0
1, x

0
2, x

0
3, x

0
4) and dx

dt (0) = 0, where t2 > t0 = 0. If the solution x(t) has a simultaneous binary

collision at t2 = T > 0, then the solution x(t) can be extended to a periodic solution with period
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2T as follows, in the sense of regularization given by theorem 3.2,

x̃(t) =

 x(t− 2nT ) 2nT ≤ t ≤ (2n+ 1)T,

x((2n+ 2)T − t) (2n+ 1)T ≤ t ≤ (2n+ 2)T.
(3.39)

Proof. Because the motion is governed by Newton’s differential equation (3.1), it encounters a

singularity at t2 = T which the velocities of the bodies approaching collision go to infinity. So the

equation can not give information of the motion in a neighborhood of t2. But the singularity at

t2 = T causing by simultaneous binary collision can be removed in the sense of theorem 3.2. Then

the orbit can be obtained in the following steps.

Step 1: The four particles are released at t0 = 0 with initial positions x0 = x(t0) = (x0
1, x

0
2, x

0
3, x

0
4)

and zero initial velocity. During time interval (t0, t1], t1 < t2, the motion of the four particles are

described by Newton’s differential equation (3.1) (see Figure 14).

Figure 14: Periodic Solution with SBC

There is no any collision in the time interval (t0, t1] and x(t1) = (x1
1, x

1
2, x

1
3, x

1
4) close to simulta-

neous binary collision, i.e. 0 < x1
2 − x1

1 < ρ,−δ < m1x1
1+m2x1

2
m1+m2

< −δ−1.

Step 2: Because x(t1) falls into Uρ,δ and leads to a simultaneous binary collision solution, the

motion of x can be described by the differential equations (3.20)-(3.25) in the new coordinates

(3.18) and the new time scale (3.19). During the time (t1, t2), x approaches a simultaneous binary

collision and encountering the singular set
∧

at t = t2 = T .

Step 3: By theorem 3.4, the motion can be extended as a time reverse, i.e. x̃(t) = x(2T − t)
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for t ∈ (t2, t3), t3 = 2t2 − t1

Step 4: The position x(t3) of the particles at t3 is equal to the position x(t1) but their velocity

is just opposite by step 3. Then in the following time interval (t3, t4], t4 = 2T , the particles go back

to the initial position at t4 and they have zero velocity at t4. The motion in (t3, t4] is described

by equations (3.1).

Then the orbit completes one period in [0, 2T ] and it repeats step 1, step 2, step 3, step 4. So

the solution is extended to a periodic solution with simultaneous collision at t = (2n+ 1)T, where

n is an integer.

Note that the time scale is τ and new coordinates are ξi and ηi, i = 1, 2, 3 in step 2 and step

3. But we can change back to x and t by (3.18) and (3.19). ]

The proof of theorem 3.6. We only need check whether the conditions in theorem 3.6 lead

to a simultaneous binary collision without any other collisions. By Newton’s law, the accelerations

of the four particles are respectively,

a1 = m2s
−2 +m3(s+ 2)−2 +m4(2s+ 2)−2,

a2 = −m1s
−2 +

m3

4
+m4(s+ 2)−2,

a3 = −m1(s+ 2)−2 − m2

4
+m4s

−2,

a4 = −m1(2s+ 2)−2 −m2(s+ 2)−2 −m3s
−2.

Note that m1 = m4 = m,m3 = m2 = 1 then no matter the choice of s and m, a1 > 0 and a4 < 0.

If s,m can be chosen such that the acceleration a2 < 0 but a3 > 0, then x0 leads to a simultaneous

binary solution if it is released with zero velocity because of the symmetry of positions and masses.

Therefore it is extended to a periodic solution with singularity.

In order that a2 < 0 and a3 > 0, we only need make a2 < 0 by choosing proper s,m1 because

a2 = −a3. The numerator of a2 is

na2 = −16m1s− 16m1 + s4 + 4s3 + 4s2,

and the denominator of a2 is

da2 = 4s2(s+ 2)2.
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So when s,m1 fall into the region of s2(s2+4s+4)
16(1+s) < m, it has a2 < 0 and leads to a simultaneous

binary collision (see Figure 14). ]

3.3 Periodic Solutions with Single Binary Collisions and Simultaneous

Binary Collisions

The behavior of the motion for the pair closing the single binary collision can be described as

time reverse plus a higher order term in a very short time neighborhood. At the moment of

single binary collision, the velocities of the particles involving the collision approach to infinity.

By changing the time scale, the velocities of the particles remain bounded as slow motion. The

motion can be extended to cross the collision point. Any periodic solution of collinear four body

problem involves collisions. In this section many periodic solutions are constructed with both a

sequence of single binary collisions and a sequence of simultaneous binary collisions in the collinear

four body problem. The central configuration of collinear four body problem plays an important

role in our construction. It separates periodic solutions with collisions into two categories: type A

periodic solution (not involving single binary collisions), and type B periodic solution (involving

single binary collisions).

Let x0 = (x0
1, x

0
2, x

0
3, x

0
4) denote the initial positions of collinear four body problem with −∞ <

x0
1 < x0

2 < 0 < x0
3 < x0

4 < ∞. We assume that x0 possesses symmetries on positions and

masses, i.e., x0
1 = −x0

4, x
0
2 = −x0

3 and m1 = m4,m2 = m3. Without loss of generality, let

s0 = x0
2 − x0

1 = x0
4 − x0

3 > 0, x0
2 = −1, x0

3 = 1, and m1 = m4 = m,m2 = m3 = 1.

x0 = (−s0 − 1,−1, 1, s0 + 1) with mass (m, 1, 1,m) forms a central configuration if and only if

m =
(s0 + 1)2

(
s0

5 + 5 s04 + 8 s03 − 4 s02 − 16 s0 − 16
)

17 s04 + 68 s03 + 100 s02 + 64 s0 + 16
. (3.40)

For s0 > 1.396812289, there is a positive m > 0 such that x0 = (−s0 − 1,−1, 1, s0 + 1) with mass

(m, 1, 1,m) forms a central configuration. The result is a special case of theorem 2.1 in subsection

2.2. In this section, all the motion are obtained by releasing the four bodies at initial position

with zero velocity.
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3.3.1 Type A Periodic Solution

Theorem 3.7. Assume that x0 = (−s0 − 1,−1, 1, s0 + 1) with mass (m, 1, 1,m) forms a central

configuration. Then y0 = (−s0 + s − 1,−1, 1, s0 − s + 1) with mass (m, 1, 1,m) leads to a peri-

odic solution only involving simultaneous binary collision if the four bodies are released with zero

velocity, where 0 < s < s0.

Proof. It is well known that there is a unique central configuration with the fixed order of

four given masses in collinear four body problem. Because x0 = (−s0− 1,−1, 1, s0 + 1) with mass

(m, 1, 1,m) form a central configuration (the formula of central configuration for s0 and m is given

as above), then y0 = (−s0 + s − 1,−1, 1, s0 − s + 1) with mass (m, 1, 1,m) can not lead to a

total collision with 0 < s < s0. By symmetry, y0 only can lead to either a single binary collision

first between m2 and m3 or a simultaneous binary collision first. By lemma 3.3, if y0 leads to a

simultaneous binary collision first, then y0 = (−s0 + s − 1,−1, 1, s0 − s + 1) leads to a periodic

solution only involving simultaneous binary collision.

Claim:For 0 < s < s0, y0 can not lead to a single binary collision between m2 and m3.

At x0, the accelerations of the four particles are respectively,

ax1 = m2s
−2
0 +m3(s0 + 2)−2 +m4(2s0 + 2)−2,

ax2 = −m1s
−2
0 +

m3

4
+m4(s0 + 2)−2,

ax3 = −m1(s0 + 2)−2 − m2

4
+m4s

−2
0 ,

ax4 = −m1(2s0 + 2)−2 −m2(s0 + 2)−2 −m3s
−2
0 .

They lead to a total collision. When the initial condition changes to y0 = (−s0 + s− 1,−1, 1, s0−

s+ 1), the accelerations of the four particles are respectively,

ay1 = m2(−s0 + s)−2 +m3(s− s0 − 2)−2 +m4(2(s0 − s) + 2)−2,

ay2 = −m1(−s0 + s)−2 +
m3

4
+m4((s− s0 − 2)−2,

ay3 = −m1(s− s0 − 2)−2 − m2

4
+m4(−s0 + s)−2,

ay4 = −m1(2(s0 − s) + 2)−2 −m2(s0 + 2)−2 −m3s
−2
0 .
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By direct computation, it is easy to see 0 < ax1 < ay1 but ax2 > ay2 and symmetrically for other

two bodies. This implies that m1 and m2 shall collide before m2 and m3 collides by comparing

this motion with the motion having total collision. So the motion with initial position y0 and

zero initial velocity can not have a single binary collision first between m2 and m3. By symmetry,

it must lead to a simultaneous binary collision. Therefore, by lemma 3.3, it leads to a periodic

solution only involving simultaneous binary collision. Figure 15 illustrates a case that m2 and m3

move inside first (but not collide) then turn back to a simultaneous binary collision.

3.3.2 Type B Periodic Solution

Lemma 3.4 Let x0 = (−s0 − 1,−1, 1, s0 + 1) with mass (m, 1, 1,m) form a central configu-

ration, where s0 > 0. Then there exist a unique s∗1 > 0, such that, for any 0 < s < s∗1,

y0 = (−s0 − s− 1,−1, 1, s0 + s+ 1) leads to a periodic solution involving exact one single binary

collision between m2 and m3 before a simultaneous binary collision in [0, T ], where T corresponds

to the first time of simultaneous binary collision after releasing the four bodies from y0 at time

t = 0 with zero velocity.

Proof. Claim 1: For small s > 0, the motion with initial position y0 and zero velocity at t = 0 has

exact one single binary collision betweenm2 andm3 before a simultaneous binary collision in [0, T ].

Figure 15: Type A Periodic Solution
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Proof of the claim 1. By similar argument as in the proof of theorem 3.7, the accelerations ofm1

and m2 at time t = 0 satisfy 0 < ay1 < ax1 but ax2 < ay2 and symmetrically for other two bodies.

This implies that m2 and m3 shall collide at origin before m1 and m2 collides by comparing the

motion with total collision. So the motion with initial position y0 = (−s0− s−1,−1, 1, s0 + s+1)

has a single binary collision between m2 and m3 first at time 0 < t1 < T . It can be regularized

and then the motion will continue and keep its symmetry. m1 continues to right and m2 bounds

back.

If m1 and m2 don’t collide after t1, then there exists a time t2 with t1 < t2 such that m2 turns

back to right, that is, the velocity of m2 at t2 is zero. Let y(t) = (y1(t), y2(t), y3(t), y4(t)) be the

solution with initial position y0 and zero initial velocity. Comparing the orbit of y(t) in [0, t1)

with the orbit of y(t′) in (t1, t2], we shall have y2(0) = y2(t2) < 0 if there is no force on m2 from

m1 and m4. But when the position y2(t) of m2 in [0, t1) is equal to the position y2(t′) of m2 in

[t1, t2), ÿ2(t) > ÿ2(t′) > 0 because m1 and m4 are closer to m2 at t′ than at t. Therefore we have

y2(t2) < y2(0) < 0. Similarly, 0 < y3(0) < y3(t2).

If s is small enough, m1 can go over position y2(0) at time t1, i.e. −1 < y1(t1) < 0. So m1 and

m2 must collide, say at time T , after the single binary collision between m2 and m3 by continu-

ity argument and by comparing with total collision. Then the collision must be a simultaneous

binary collision by symmetry. The orbit can be extended to a periodic solution with exact one

single binary collision (at t1) and one simultaneous binary collision (at T ) in [0, T ].

Claim 2: There exist a s̃ > 0, such that the motion with initial position y0 = (−s0 − s̃ −

1,−1, 1, s0 + s̃+ 1) has at least two single binary collision between m2 and m3 before m1 and m4

are involved in any collisions.

Proof of claim 2. Consider an auxiliary system z = (−r, z2, z3, r) with mass (m, 1, 1,m) by fixing

z1 = −r, z4 = r under Newton’s law. So z1(t) = −r, z2(t) = r and z2, z3 are determined by the

following equations,

z̈2(t) = − m

(z2 + r)2
+

1
(z2 − z3)2

+
m

(z2 − r)2
(3.41)

z̈3(t) = − m

(z3 + r)2
− 1

(z3 − z2)2
+

m

(z3 − r)2
(3.42)

with initial position z(0) = (−r,−1, 1, r) and zero initial velocity. By the symmetry of differential
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equations and initial conditions, z3(t) = −z2(t).

In fact, equation (3.41) is a Hamiltonian system with

H =
1
2
|ż2|2 +

(
− m

(z2 + r)
+

1
4z2

+
m

(z2 − r)

)
.

H is a constant along solution z2(t). At t = 0, z2(0) = −1, ż2(0) = 0, then H ≡ C =
(
− m

(−1+r)−
1
4 + m

(−1−r)

)
= −( 2mr

r2−1 + 1
4 ) < 0. Assume that z2(t) travels from -1 to 0 in [0, t1]. We have

dt =
dz2√

2
(
C −

(
− m

(z2+r) + 1
4z2

+ m
(z2−r)

)) .
So

t1(m, r) =
∫ 0

−1

dz2√
2
(
C −

(
− m

(z2+r) + 1
4z2

+ m
(z2−r)

))
=
∫ 0

−1

dz2√
2
(
C − 2mr

(z2
2−r2)

− 1
4z2

)
≥
∫ 0

−1

dz2√
2
(
C − 2mr

((−1)2−r2) −
1

4z2

)
=
∫ 0

−1

dz2√
2
(
− 1

4 −
1

4z2

) =
√

2π
2

From (3.41), the acceleration of m2 can be always positive if r is large, in fact,

z̈2(t) = − m

(z2 + r)2
+

1
(z2 − z3)2

+
m

(z2 − r)2

=
2mrz2

(z2
2 − r2)2

+
1

4z2
2

≥ −2mr
(1− r2)2

+
1

4z2
2

> 0

if m < (1−r2)2

8r and z2 ∈ [−1, 0]. Then we have

t1(m, r) ≤
∫ 0

−1

dz2√
2
(
C − 2mrz2

(1−r2) −
1

4z2

) <∞. (3.43)

The above integral is the time that the z2 moves from −1 to 0 with the smaller acceleration

−2mr
(1−r2)2 + 1

4z2
2
> 0. For any finite time T ′ with 3t1(m, r) < T ′ <∞, there exists a large r such that

m2 and m3 collide at origin at least two times in the finite time interval [0, T ′].
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Consider another auxiliary system w = (w1,−r, r, w4) with mass (m, 1, 1,m) by fixing w2 =

−r, w3 = r under Newton’s law. So w1, w4 are determined by the following equations,

ẅ1(t) =
1

(w1 + r)2
+

1
(w1 − r)2

+
m

(w1 − w4)2
(3.44)

ẅ4(t) = − 1
(w4 − r)2

− 1
(w4 + r)2

− m

(w4 − w1)2
(3.45)

with initial positions (−s̃,−r, r, s̃) and zero initial velocity. Within the motion of w1 from s̃ to

−r, we have

ẅ1(t) ≤
k

(w1 + r)2

because (w1 + r)2 < (w1− r)2 < 4w2
1, where k = max{1,m}. By the similar argument as t1(m, r),

the time t2 for the motion of m1 from −s̃ to −r has

t2(m, s̃) ≥
∫ −r

−s̃

dw1√
2(−C2 − k

w1+r )
=

kπ

(2C2)3/2
=

π

2
√

2k
(s̃− r)3/2, (3.46)

where C2 = k
s̃−r . After comparing (3.43) with (3.46), we know that if s̃ is large enough, w1 can

not across −r and w4 can not across r in the finite time [0, T ′].

Now for the large s̃, the motion y(t) = (y1(t), y2(t), y3(t), y4(t)) with initial position y0 = (−s0 −

s̃− 1,−1, 1, s0 + s̃+ 1) and zero initial velocity has the following properties. (1) In the finite time

T ′, y1 can not across −r and y4 can not across r by comparing with the auxiliary system w(t)

because 0 < ÿ1(t) < ẅ1(t). and 0 > ÿ4(t) > ẅ4(t). (2) In the finite time T ′, y2 and y3 should

collide at least two times by comparing with the auxiliary system z(t).

Claim 3: If the motion with initial position y1 = (−s0−s1−1,−1, 1, s0+s1+1) and zero initial

velocity has n times single binary collision between m2 and m3 in [0,T], where T corresponds to

the first time of simultaneous binary collision, then y2 = (−s0 − s2 − 1,−1, 1, s0 + s2 + 1) leads

to at least n times single binary collision before simultaneous binary collision for 0 < s1 < s2 in

[0, T ].

Proof of Claim 3. At time t = 0, ÿ1
1 > ÿ2

1 > 0 but 0 < ÿ1
2 < ÿ2

2 , this implies that y2
1 goes slower

than y1
1 but y2

2 goes faster than y2
1 . Therefore, y2 takes shorter time to have the first single binary

collision between m2 and m3. By similar argument, we can prove that y2 also take shorter time to

have the second binary collision between m2 and m3. Then in [0, T ], y2 has at leat n times single

binary collision before simultaneous binary collision.
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Now assume that s∗1 = sup{s > 0 : y0 = (−s0 − s − 1,−1, 1, s0 + s + 1) leads to a periodic

solution involving only one single binary collision between m2 and m3 and one simultaneous binary

collision in one period. }

The claim 1 proves the existence of s∗1. The claim 2 and claim 3 prove s∗1 is finite and unique.

This completes the proof of lemma 3.4.]

Theorem 3.8. Let x0 = (−s0−1,−1, 1, s0+1) with mass (m, 1, 1,m) form a central configuration,

where s0 > 0 is implicitly defined in (3.40).

(1) Then there exists a sequence 0 < s∗1 < s∗2 < · · · such that the motion has exact n times

single binary collision between m2 and m3 before a simultaneous binary collision in [0, T ], where

T corresponds to the first time of simultaneous binary collision, if the motion starts with initial

position y0 = (−s0 − sn − 1,−1, 1, s0 + sn + 1) and zero initial velocity, where s∗n−1 < sn < s∗n.

(2)If four particles are released from y0 = (−s0−s∗n−1,−1, 1, s0+s∗n +1) with zero initial velocity,

n = 1, 2, · · · , then the motion ends at a total collision after n times single binary collision between

m2 and m3.

Figure 16: Type B Periodic Solution

Proof. The proof can be done by induction base on the proof of lemma 3.4. Figure 16

illustrates an example that m2 and m3 collide 4 times before a simultaneous binary collision.
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Remark: Let x0 = (−s0−1,−1, 1, s0 +1) with mass (m, 1, 1,m) form a central configuration,

where s0 > 0. Assume y0 = (−s0 − sn − 1,−1, 1, s0 + sn + 1) denote the initial position of the

collinear four bodies, where s∗n−1 < sn < s∗n. Let y(t) = (y1(t), y2(t), y3(t), y4(t)) be the peri-

odic solutions involving single binary collisions and simultaneous binary collisions with y(0) = y0

and dy
dt (0) = 0. Then there exist a time sequence 0 = t1 < t2 < · · · < tn < T such that

y2(ti+1) ≤ y2(ti) < 0, 0 < y3(ti) ≤ y3(ti+1), and dyj

dt (ti) = 0, where j = 2, 3, i = 1, · · · , n − 1.

Figure 16 illustrates an example that m3 goes further each time.

4 Stability of Periodic Solutions Generated from Central

Configuration

In 1772, Lagrange discovered his remarkable equilateral periodic solutions of the planar three-

body problem [13]. For any choice of the three masses, there exists a family of periodic solutions,

each body travelling along a specific Kepler orbit. Contained in the family are two types of pe-

riodic orbits: rigid circular motion (choosing a circular Kepler orbit) and homographic motion

(choosing an elliptic Kepler orbit).

A crucial first step in analyzing the local behavior near a periodic solution is to compute the

characteristic multipliers of the linearized equations. For the circular case, this was first accom-

plished by Gascheau in 1834 in his thesis [19]. Recently Roberts [40] in 2002 showed that the

stability of the family of periodic solution depends on two parameters– the eccentricity e of the

orbit and the mass parameter β = 27(m1m2 + m1m3 + m2m3)/(m1 + m2 + m3)2. Roberts was

able to reduce the dimensions of the problem from 12 to 4 by eliminating 8 standard first integrals

and then making a clever change of coordinates. By analyzing the behavior of the characteristic

multipliers and how they vary with e and β, he eventually obtained the region of stability and

instability of the Kepler periodic solution.

As mentioned in section 2, for n ≥ 4 it is very difficult to find all the central configurations,

50



www.manaraa.com

much less to analyze their stability. The exceptions are the highly symmetrical central configura-

tions, like the regular polygon with equal masses. Some progress has been made in finding and

analyzing the stability of central configurations of the four-body problem [4],[16],[46].

In this section, we study the stability of Kepler orbits for rhombus four body problem. First,

we carefully reduce the dimensions of the problem from 16 to 4. This is achieved by means of

symmetry and by eliminating the standard integrals. Then we make a change of coordinates which

decouples the associated linear system. One of the resulting systems yields two +1 multipliers,

expected due to the nature of the periodic solution. The other system is two dimensional and

governs the linear instability of the periodic solution. This system is a type of Hill Equation.

The resulting system is marvellously simple and only depends on the size of the rhombus and the

eccentricity e. We then analyze the behavior of the characteristic multipliers and how they vary

with e and the size of the rhombus. We prove all the Kepler periodic solutions of the rhombus

four body problem are unstable.

4.1 Kepler Orbits

The N-body problem configuration q = (q1, q2, · · · , qN ) describes a planar positions of N point

masses m1, · · · ,mN , where qi ∈ R2. Newtonian system (1.1) is the second-order ordinary differ-

ential equation system:

miq̈i =
∑
i 6=j

mimj(qj − qi)
|qj − qi|3

=
∂U

∂qj
, i = 1, 2, · · · , N. (4.1)

where the function

U(q) =
∑

1≤k<j≤n

mkmj

|qk − qj |
.

is called the potential function on the set of noncollision configurations (where qi 6= qj , i 6= j). The

Hamiltonian for the N-body problem is the difference of kinetic minus potential

H(q1, q2, · · · , qN , p1, p2, · · · , pN ) =
N∑
i

1
2mi

‖pi‖2 − U(q).

The Hamiltonian equations of the N-body problem are

q̇i =
1
mi

pi, ṗi =
∂U(q)
∂qi

, i = 1, 2, · · · , N (4.2)
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We recall the fact that the N-body problem always admits uniformly rotating solutions which

generalize the circular rotational solutions of the Kepler equation. Following the presentation in

[22], we are looking for solutions of the form

qi(t) = ψ(t)q0i, i = 1, 2, · · · , N (4.3)

where ψ(t) is a scalar function and q0i is a constant vector. For the moment, identify R2 with the

complex plane C so that qi(t), ψ(t), q0i are complex numbers. Substituting this guess (4.3) into

equation (4.1), we have

|ψ|3ψ−1ψ̈miq0i =
∑
i 6=j

mimj(q0i − q0j)
‖q0i − q0j‖3

.

This can be split into an equation for the scalar function ψ(t)

ψ̈ = − µψ

|ψ|3
(4.4)

and an equation for the initial positions q0 = (q01, · · · , q0N )

∑
i 6=j

mimj(q0i − q0j)
|q0i − q0j |3

+ µmiq0i = 0. (4.5)

The motion of our special solution is determined by equation (4.4), which is simply the planar

Kepler Problem. Among the solutions to this problem are periodic orbits on circles and ellipses.

The initial shape of the solution in position space R2N is determined by equation (4.5) and the

solution is called a central configuration (see Definition 2.1). The above analysis shows that all

central configurations q0 admit homothetic solutions q(t) = ψ(t)q0, ψ(t) ∈ R satisfies (4.4). Such

homothetic solutions end in total collapse. Ejection orbits are the time reversal of collision orbits.

Coplanar central configurations admit in addition homographic solutions q(t) = ψ(t)q0, ψ(t) ∈

C where each of the N-masses executes a similar keplerian ellipse of eccentricity e, 0 ≤ e ≤ 1. When

e = 1 the homographic solutions degenerate to a homothetic solution which includes total collapse.

When e = 0, the relative equilibrium solutions are recovered consisting of uniform circular motion

for each of the masses about the common center of mass.

Consider the rhombus four body problem, let q0 = (q01, · · · , q04) be the position vector as

shown in Figure 17.
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Note that summing equation (4.5) over all i, one obtain
∑4

i=1miq0i = 0 so that the center of

mass is at the origin. For simplicity, we choose q01 = (−a, 0) with a > 0 and q03 = (0, b) with b > 0.

Similarly by the symmetry of rhombus, the other two coordinates q02, q04 are also determined.

Once given a, b, and 1√
3
a < b <

√
3a, Long and Ouyang [16] proved that m2 = m1,m4 = m3 and

the masses are determined by the configuration. Furthermore, we can scale the masses so that the

parameter µ = 1.

This fixes a pair of unique values of m1,m3 as a function of the two parameters a, b. By

checking equation (4.5), we find

m1 = 4

(
a2 + b2

)3/2
(
8 b3 −

(
a2 + b2

)3/2
)
a3

64 a3b3 − (a2 + b2)3
(4.6)

m3 = 4

(
8 a3 −

(
a2 + b2

)3/2
)
b3
(
a2 + b2

)3/2

64 a3b3 − (a2 + b2)3
(4.7)

Kepler’s equation (4.4) is solvable up to quadrature [22] page 100. In polar coordinates (r, θ), the

solution with µ = 1 is given by

r(t) =
ω2

1 + e cos θ(t)
, θ̇ =

ω

r2
, θ(0) = 0, (4.8)

where e, the eccentricity of the ellipse, and ω, the angular momentum, are two parameters. We

have chosen the argument of the perihelion and θ(0) both to be zero. This means the true anomaly

begins at zero and is measured from the positive horizontal axis. While these choices clearly do

Figure 17: Rhombus Four Body Problem
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not affect the stability of the periodic orbits, the parameters e and ω could. But we will show that

ω has no effect on the linear stability of kepler’s orbits.

If we write our central configuration in polar coordinates, q0i = r̄i(cos θ̄i, sin θ̄i), where r̄1 =

r̄2 = a, r̄3 = r̄4 = b and θ̄1 = π, θ̄2 = 2π, θ̄3 = π
2 , θ̄4 = 3π

2 then the position component of the

periodic orbit is written as

qi(t) = r̄ir(t)(cos(θ(t) + θ̄i), sin(θ(t) + θ̄i)). (4.9)

In order to study the stability of the periodic solution, one has to compute a fundamental matrix

solution X(t) to the equations of motion linearized about the periodic orbit. The monodromy

matrix is the matrix C satisfying X(t + T ) = X(t)C (for example see [5]). Stability is governed

by the eigenvalues of the monodromy matrix, called the characteristic multipliers. Since we are

dealing with a Hamiltonian system, C is symplectic and the multipliers are symmetric about the

unit circle. In order to have linear stability, it is necessary that all the multipliers have modulus

one. For the planar four body problem, it is a 16 dimensional ODE system (4.2). As is well known,

the N-body problem is a Hamiltonian system with several first integrals, therefore we can reduce

the dimension by eliminating all 8 standard first integrals. But the remaining system still has 8

dimensions even after eliminating all first integrals. For this reason, it is still hard to analyze the

stability of the Kepler periodic orbits.

Here we employ a new approach to reduce the degree of freedom of the Hamilton system by

means of symmetry constraint. The constrained Hamilton system has 2 degrees of freedom and

the corresponding ODE system which is a type of Hill equation has dimension 2 after eliminating

the first integrals. The instability of the original system is governed by the two dimensional ODE

system. However the stability of the new ODE system may not corresponds to the stability of

the original ODE system. But we will show the Kepler orbits of rhombus four body problem

are unstable in the reduced system, therefore, Kepler orbits of rhombus four body problem are

unstable in original system.
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4.2 Constrained Hamilton System on Rhombus Four-Body Problem

Let us turn to the variational method [24] to construct the constrained Hamilton system on rhom-

bus four-body problem. We define the Lagrangian L(q(t), q̇(t)) = L(q1(t), · · · , q4(t), q̇1(t), · · · ,

q̇4(t)) to be the Kinetic energy minus the potential energy of the system and q̇i = dq
dt to be the

velocity:

L(q1(t), · · · , q4(t), q̇1(t), · · · , q̇4(t)) =
4∑

i=1

mi

2
|q̇i|2 +

∑
i<j

mimj

|qi − qj |
.

Then the action functional

I[q(t)] :=
∫ T

0

4∑
i=1

mi

2
|q̇i|2 +

∑
i<j

mimj

|qi − qj |
dt, q(t) ∈M

is defined for absolutely continuous T-periodic curves q(t) in the configuration manifold M =

{q(t) ∈ C2([0, T ]; R2×4)|q(t+ T ) = q(t)}. For the particular rhombus four body problem, we will

look for symmetric solutions of the equations of the motion. Consider the following symmetric

function space in polar coordinates

M =


q1(t) = r1(t) exp(iθ1), q2(t) = exp(iπ)q1(t),

q3(t) = r3(t)
r1(t)

exp(−iπ
2 )q1(t), q4(t) = exp(iπ)q3(t)

 .

Under these constraints, q̇1 = (ṙ1 cos(θ1) − r1 sin(θ1)θ̇1, ṙ1 sin(θ1) + ṙ1 cos(θ1)θ̇1), we have a new

Lagrangian in polar coordinates

L(r1, r3, θ1, ṙ1, ṙ3, θ̇1) =
1
2
[m1(ṙ21 + r21 θ̇

2
1) +m2(ṙ21 + r21 θ̇

2
1) +m3(ṙ23 + r23 θ̇

2
1) +m4(ṙ23 + r23 θ̇

2
1)]

+
m1m2

2r1
+
m1m3

k
+
m1m4

k
+
m2m3

k
+
m2m4

k
+
m3m4

2r3
,

where k =
√
r21 + r23. Then the corresponding conjugate variables R1, R3,Θ1 with respect to

r1, r3, θ1 are

R1 = (m1 +m2)ṙ1, R3 = (m3 +m4)ṙ3,Θ1 = (m1r
2
1 +m2r

2
1 +m3r

2
3 +m4r

2
3)θ̇1.

The new Lagrangian is a projection of the 12-dimensional Euler-Lagrange flow on a non-invariant

6-dimensional submanifold (the tangent space of the space of rhombi). The Hamiltonian is

H1 =
R1

2

2(m1 + m2 )
+

R3
2

2(m3 + m4 )
+

Θ1
2

2(m1 r1 2 + m2 r1 2 + m3 r3 2 + m4 r3 2)
(4.10)

−m1 m2

2r1
− m1 m3

k
− m1 m4

k
− m2 m3

k
− m2 m4

k
− m3 m4

2r3
.
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The Hamiltonian will be independent of θ1 which means that Θ1 (angular momentum) is a first

integral, and θ1 is an ignorable variable. Setting Θ1 = c and substituting into equation (4.10) gives

H =
R1

2

2(m1 + m2 )
+

R3
2

2(m3 + m4 )
+

c2

2(m1 r1 2 + m2 r1 2 + m3 r3 2 + m4 r3 2)
(4.11)

−m1 m2

2r1
− m1 m3

k
− m1 m4

k
− m2 m3

k
− m2 m4

k
− m3 m4

2r3
.

This reduces the system to four dimensions, in the variables (r1, r3, R1, R3). The equations of

motion in these new variables are

ṙ1 =
R1

m1 +m2
,

ṙ3 =
R3

m3 +m4
,

Ṙ1 =
c2 (m1 r1 +m2 r1)

(m1 r12 +m2 r12 +m3 r32 +m4 r32)2
− m1m2

2r12 − m1m3 r1

(r12 + r32)3/2

− m1m4 r1

(r12 + r32)3/2
− m2m3 r1

(r12 + r32)3/2
− m2m4 r1

(r12 + r32)3/2
,

Ṙ3 =
c2 (m3 r3 + m4 r3)

(m1 r12 +m2 r12 +m3 r32 +m4 r32)2
− m1m3 r3

(r12 + r32)3/2
− m1m4 r3

(r12 + r32)3/2

− m2m3 r3

(r12 + r32)3/2
− m2m4 r3

(r12 + r32)3/2
− m3m4

2r32 .

Although the submanifold M is non-invariant, we still have lemma 4.1.

Lemma 4.1. If γ1(t) = (q1(t), · · · , q4(t), p1(t), · · · , p4(t)) is a critical point of the original

system and γ1(t) = (q1(t), · · · , q4(t), p1(t), · · · , p4(t)) is also in the constrained space M , then

γ2(t) = (r1(t), r3(t), R1(t), R3(t)) is a periodic solution of the constrained Hamiltonian system,

where γ2(t) is from γ1(t) by relation M .

Proof. By the construction of the new Lagrangian, it is easy to prove Lemma 4.1. The following

solution is an example. ]

Using (4.8) and (4.9), a short calculation shows that the Kepler periodic solution, denoted in

general as γ(t), is written as

r1(t) = ar(t), R1(t) = (m1 +m2)aR(t),

r3(t) = br(t), R3(t) = (m3 +m4)bR(t) (4.12)
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where m2 = m1,m4 = m3 and m1,m3 satisfy the equations (4.6), (4.7). Recall that

r(t) =
ω2

1 + e cos θ(t)
, ṙ(t) = R(t), θ̇ =

ω

r2
, θ(0) = 0

is the periodic solution to Kepler’s problem mentioned earlier. In addition to the size of the

rhombus, the two parameters in this solution are eccentricity e and the angular momentum ω of

the elliptic orbits. The total angular momentum for the full problem has the value Θ1 = c =

(m1a
2 +m2a

2 +m3b
2 +m4b

2)ω.

Lemma 4.2. If the Kepler solution γ2(t) is linearly unstable in constrained Hamiltonian sys-

tem, then the Kepler solution γ1(t) is also linearly unstable in original Hamiltonian system, where

γ2(t) is constructed from γ1(t) by relation M .

Proof. We’ll prove it by contradiction. Assume γ1(t) is linearly stable in original Hamiltonian

system. For any initial condition v10 with |v10| very small, the solution v1(t, v10) of the original

linearized Hamiltonian system along γ1(t) is also very small, where v1(0, v10) = v10. Because the

constrained linearized Hamiltonian system along γ2(t) is the projection of 12 dimensional original

system, for any initial condition v20 with |v20| very small, the solution v2(t, v20) of the constrained

linearized Hamiltonian system along γ2(t) is also very small, where v2(0, v20) = v20. So γ2(t) is

also stable. ]

In order to study the linear stability of the Kepler solution γ(t) given by (4.12), we will lin-

earize the reduced Hamilton equation along the Kepler solution. Then we compute a fundamental

matrix solution X(t) to the linearized equation and calculate its eigenvalues. But we will decouple

the system before we compute the fundamental solution.

Linearizing the four-dimensional system about the periodic solution γ(t) gives the time-dependent

periodic linear Hamiltonian system

Ẋ(t) = J2D
2H(γ(t))X = A(t)X
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where A(t) = J2D
2H(γ(t)) and J2 is the canonical matrix

J2 =



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


After a good deal of calculation and simplification, we have

A(t) =



0 0 1
2m1

0

0 0 0 1
2m3

D31 D32 0 0

D32 D42 0 0


where

D31 =
−8ω2m1

2a2

r4 (m1 a2 + m3 b2)
+

2ω2m1

r4
+

m1
2

r3a3
+

12m1 m3 a
2

(a2 + b2)5/2
r3
− 4m1 m3

(a2 + b2)3/2
r3
,

D32 =
−8ω2m3 bm1 a

r4 (m1 a2 + m3 b2)
+

12m1 m3 ba

(a2 + b2)5/2
r3
,

D42 =
−8ω2m3

2b2

r4 (m1 a2 + m3 b2)
+

2ω2m3

r4
+

12m1 m3 b
2

(a2 + b2)5/2
r3
− 4m1 m3

(a2 + b2)3/2
r3

+
m3

2

r3b3
.

4.3 Decoupling the Linear System

In this subsection, we follow the Gareth E. Roberts’ ideas and presentation in [40] to decouple

the linear system. For the convenience of the reader we give a complete proof and develop the

method to decouple the linear system.

A linear, time-dependent periodic Hamiltonian system is one of the form

Ẋ(t) = JD2H(γ(t))X (4.13)

where J is the canonical matrix

J =

 0 I

−I 0


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and D2H(t+ T ) = D2H(t).

When such a system results from linearizing about a periodic solution, it can be shown that

there are at least two +1 characteristic multipliers. One of these is attributable to the periodic

orbit and another arise from the existence of an integral, which in this case is the Hamiltonian H.

This fact is easily proved via differentiation [5], [22]. Indeed, given a periodic solution γ(t) to a

Hamiltonian system ẋ = J∇H(x), plugging in γ(t) and differentiating with respect to t yields

γ̈(t) = J2D
2H(γ(t))γ̇(t). (4.14)

Thus, γ̇(t) is a solution of the associated linear system. Since γ(t) is periodic, so is its derivative.

If we choose coordinates so that γ(0) = (1, 0, · · · , 0), the first column of the monodromy matrix

is (1, 0, · · · , 0) and +1 is an eigenvalue. But relation (4.14) is important for another reason. That

is, it suggests a useful change of coordinates. Choosing variables so that the periodic orbit is

easily represented helps decouple the system. This follows from a standard result in the theory of

Hamiltonian systems.

Define the skew-inner product of two vectors v, w ∈ C4n as

Ω(v, w) = vTJw.

Note that JT = −J = J−1 so that J is orthogonal and skew-symmetric. A key trait of linear

Hamiltonian systems is that the skew-orthogonal complement of an invariant subspace is also in-

variant.

Lemma 4.3. Suppose W is an invariant subspace of the matrix JD2H(t), then the skew-

orthogonal complement of W , defined as W⊥ = {v ∈ C4b : Ω(v, w) = 0 ∀w ∈ W}, is also an

invariant subspace of JD2H(t).

Proof. Suppose v ∈W⊥. Then, for any w ∈W we have

Ω(JD2H(t)v, w) = vTD2H(t)JTJw = vTD2H(t)w = −vTJŵ = 0,

where ŵ = JD2H(t)w ∈W . Thus JD2H(t)v ∈W⊥. ]
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Given an invariant subspace, Lemma 4.3 shows that a simple linear change of variables will

decouple the system. The characteristic multipliers remain the same since the transformation is

linear. To apply these ideas to our problem, we need to find an invariant subspace for A(t) =

J2D
2H(γ(t)). As mentioned before, the periodic orbit itself provides an excellent suggestion. We

make use of the fact that the Kepler periodic solution r(t) satisfies

r̈(t) =
ω2

r3
− 1
r2
. (4.15)

...
r (t) =

(
−3ω2

r4
+

2
r3

)
ṙ. (4.16)

From these we have

γ =



r1

r3

R1

R3


=



ar(t)

br(t)

(m1 + m2 )aR(t)

(m3 + m4 )bR(t)


=



ar(t)

br(t)

(m1 + m2 )aṙ(t)

(m3 + m4 )bṙ(t)


,

and

γ̇ =



aṙ(t)

bṙ(t)

(m1 + m2 )ar̈(t)

(m3 + m4 )br̈(t)


and γ̈ =



ar̈(t)

br̈(t)

(m1 + m2 )a
(
−3ω2

r4 + 2
r3

)
ṙ(t)

(m3 + m4 )b
(
−3ω2

r4 + 2
r3

)
ṙ(t)


,

as expressions for the first and second derivatives of the periodic orbit. A short calculation gives

A(t)γ̇(t) = J2D
2H(γ(t))γ̇(t) = γ̈(t),

A(t)γ̈(t) = J2D
2H(γ(t))γ̈(t) =

(
−3ω2

r4
+

2
r3

)
γ̇(t).

Then the vectors W1 := [a, b, 0, 0],W2 := [0, 0, 2m1 a, 2m3 b] will span an invariant subspace W

for J2D
2H(γ(t)). We then apply the equalities m2 = m1,m4 = m3 as well as other relations such

as (4.6) to (4.8) as needed. Consider the change of variables determined by
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

r1

r3

R1

R3


=



a 0 2m3 b 0

b 0 −2m1 a 0

0 2m1 a 0 b

0 2m3 b 0 −a





x1

x2

x3

x4


.

The determinant of the linear transformation matrix is −4m1
2a4− 8m3 b

2m1 a
2− 4m3

2b4 which

is nonzero. The last two columns of the above matrix are chosen to form a basis for the skew-

orthogonal complement of W . Consequently, this change of variables will decouple our linear

system into two 2× 2 system. The new coordinates are

x1 =
m1 ar1

m1 a2 + m3 b2
+

m3 br3
m1 a2 + m3 b2

,

x2 =
aR1

2(m1 a2 + m3 b2)
+

bR3

2(m1 a2 + m3 b2)
,

x3 =
br1

2(m1 a2 + m3 b2)
− ar3

2(m1 a2 + m3 b2)
,

x4 =
m3 bR1

m1 a2 + m3 b2
− m1 aR3

m1 a2 + m3 b2
,

and the new differential equation system is

ẋ1

ẋ2

ẋ3

ẋ4


=



0 1 0 0(
− 3ω2

r4 + 2
r3

)
0 0 0

0 0 0 D34

0 0 D43 0





x1

x2

x3

x4


,

where D34 = 1
4m1 m3

, and

D43 = −
8
(
a4m1

2 − 2 a2m1
2b2 + 6 a2m3 b

2m1 − 2 a2m3
2b2 + m3

2b4
)
m1 m3

r3 (m1 a2 + m3 b2) (a2 + b2)5/2
+

4m1 m3 ω
2

r4
+

2m3
2m1

2
(
a5 + b5

)
r3b3 (m1 a2 + m3 b2) a3

.

Note that along the periodic orbit γ(t), x1 = r, x2 = R, x3 = x4 = 0. Thus, we expect the first

2× 2 system in the x1, x2 variables to identify the two +1 multipliers, leaving the remaining two

variables x3, x4 to decide the linear instability of the Kepler solution.

The equations for the x1 and x2 variables give a simple 2× 2 periodic, linear Hamiltonian system:

ẋ1 = x2,
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ẋ2 =
(
−3ω2

r4
+

2
r3

)
x1.

For the initial condition x1(0) = 0, x2(0) = 1, making use of (4.15), (4.16), we have as a solution

x1 = hṙ, x2 = hr̈, where h = ω4/(e(1 + e)2) is chosen so that x2(0) = 1. Since this is a periodic

solution with the same period as the system itself, the second column of the monodromy matrix

for this system will be (0,1). Since we have a Hamiltonian system, the monodromy matrix is

symplectic, with determinant one, and must have the form 1 0

∗ 1

 .
The equations for the remaining two variables give the following 2×2 periodic, linear Hamiltonian

system:

ẋ3 = D34x4,

ẋ4 = D43x3.

We now make a scaling of the variables using the transformation x̂3 = ω−3/2x3, x̂4 = ω3/2x4.

Since this is a linear transformation, it will not change the characteristic multipliers. Next, we

change the independent variable from t to θ. In other words, use

ẋ3 =
dx3

dt
=
dx3

dθ

dθ

dt
= x′3

ω

r2

and similar expressions for ẋ4 and ṙ. Dropping the hats off the variables and letting ′ represent

the derivative with respect to θ, our final two-dimensional system for the linearization about the

relative periodic orbit γ(t) is x′3

x′4

 =

 0 f(a, b, e, θ)

g(a, b, e, θ) 0


 x3

x4

 (4.17)

where f(a, b, e, θ) = 1
4m3 m1 (1+e cos(θ))2

and

g(a, b, e, θ) = 4m3 m1 (1 + e cos (θ))2 +
2m3

2m1
2
(
a5 + b5

)
(1 + e cos (θ))

b3 (m1 a2 + m3 b2) a3

−
8
(
a4m1

2 − 2 a2m1
2b2 + 6 a2m3 b

2m1 − 2 a2m3
2b2 + m3

2b4
)
m1 m3 (1 + e cos (θ))

(m1 a2 + m3 b2) (a2 + b2)5/2
.

m1,m3 satisfy the equation (4.6), (4.7). The differential equation system (4.17) could be regarded

as Hill’s equation. One crucial fact about this system is that the masses are determined by the
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parameters a, b of the rhombus size through (4.6), (4.7). Moreover, since ω is not present, the

angular momentum of the elliptic Kepler orbit does not affect the linear stability. So the stability

depends on a, b and e the eccentricity of the elliptic Kepler orbit.

4.4 Linear Stability Analysis

In this section, we use a standard method [5] to analyze the linear stability of the elliptic Kepler

orbits in terms of the parameters a, b and e through system (4.17). This is done by computing the

eigenvalues of Monodromy matrix. This method was used in [40] and we apply it to our problem.

Since system (4.17) has been derived from a Hamiltonian system , the characteristic polynomial

of M will be reciprocal [22]. In other words, λ is an eigenvalue of M if and only if 1/λ is also

an eigenvalue. Therefore in order to have linear stability, all the eigenvalues must be on the unit

circle. Then our main theorem in this section reads as:

Theorem 4.1. For all possible values of the three parameters a, b and e, the elliptic periodic orbits

of rhombus four-body problem are linearly unstable.

Proof. The characteristic polynomial of M has the form

p(λ) = det(λI −M) = λ2 + qλ+ 1, (4.18)

where q = −tr(M) and det(M) = 1.

Given that the multipliers are on the unit circle, there are two ways in which stability can be

lost:

1. period-doubling bifurcation (two -1 eigenvalues), occurring when q = 2,

2. two +1 eigenvalues, occurring when q = −2.

In these two cases, a pair of eigenvalues meets and then breaks off onto the real line yielding

an eigenvalue with modulus greater than one and an eigenvalue with modulus less than one. As

q < −2, we have a pair of reciprocal real positive eigenvalues i.e. λ and 1/λ and one of them

greater than positive one. As q goes to −2 from the left, the pair of reciprocal real eigenvalues
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approach each other at 1. The characteristic multipliers move continuously on the unit circle from

(1, 0) to (−1, 0) as q increases from −2 to 2. As q > 2, we have a pair of reciprocal real negative

eigenvalues i.e. λ and 1/λ and one of them less than negative one. As q goes to 2 from the right,

the pair of reciprocal real eigenvalues approach each other at −1.

To have linear stability, we need the roots of p(λ) on the unit circle, i.e. q2 ≤ 4. We begin

by analyzing the behavior of the multipliers for the circular case e = 0. In this case, the ma-

trix in system (4.17) is constant and therefore, the multipliers can be explicitly computed. The

characteristic polynomial of the coefficient matrix of (4.17) is given by

ρ2 − g(a, b, 0, θ)f(a, b, 0, θ),

where g, f only depend on the parameters a, b as e = 0. If ρ is a root of this polynomial, then e2πρ

is a characteristic multiplier. In order to have stability, the root ρ must be purely imaginary. It

requires that h(a, b) = g(a, b, 0, θ)f(a, b, 0, θ) is negative.

Using Maple, we have h(a, b) > 0 in all possible a, b values as shown in figure 18.

Figure 18: h(a, b) > 0 region

Because h(a, b) = h(b, a), a/
√

3 < b < a
√

3, we also can determine the sign of h(a, b) by fixing

a = 1 as shown in figure 19.
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The minimum of h(1, b) is 0.7836116249 while b=1. This proves that the Kepler orbit for the

circular case is unstable.

We now investigate the linear stability of the periodic orbits which are truly elliptic (e 6= 0). Since

the stability is determined by q = −tr(M), the trace of monodromy matrix, we do not need to

calculate the eigenvalues explicitly. If −2 ≤ tr(M) ≤ 2, then the periodic solution is linearly sta-

ble. If |tr(M)| > 2, it is unstable. Writing a Maple program to calculate the trace of monodromy

matrix M, we find all the traces are significantly greater than 2. For example, when a=1, b=1, e

varying from 0 to 1 by 1/20, the corresponding traces are

260.3442854, 261.0797976, 263.3111371, 267.1146285, 272.6248514,

280.0463890, 289.6736785, 301.9214558, 317.3731802, 336.8583635,

361.5791520, 393.3279113, 434.8785301, 490.7344415, 568.6778938,

683.3152296, 865.3720827, 1191.302564, 1911.784759, 4478.934516

Table 1: The Traces for a=1, b=1

When a = 1, b = 1/
√

3 + 1/100, e varying from 0 to 1 by 1/20, the corresponding traces are

Thus, the periodic solution of the rhombus four body problem is unstable.

Figure 19: h(a, b) > 0 region with a=1
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Remark: We apply this method to study the linear stability of Kepler orbits for the regular

polygon N-body problem with one body in the center of the polygon. Because for N equal masses

m at the vertices of regular polygon and arbitrary mass µ at the center, the N+1 bodies form

a central configuration. We use the symmetry to constrain our solution on regular polygon and

get a similar reduced Hamilton system. The corresponding Kepler orbit is unstable if µ ≤ m.

Although we can not infer that the original Kepler orbit is stable if µ > m, the possible stable

Kepler orbit occurs only if µ > m. R. Moeckel [39] studied the linear stability of Kepler orbits

with a dominant mass. The regular polygon N-body problem is one of his particular cases.

5 Index Theory for Symplectic Paths and Stability of Pe-

riodic Solutions

The main purpose of this section is to show that the index theory for symplectic paths is a very

flexible tool in the study of the stability. We will establish the relation between the stability of

periodic solution for a Hamiltonian system and its index in low dimensions.

There are infinitely many ways to define index theories for paths of symplectic matrices. A

definition of the index theory for symplectic paths is meaningful if it can be applied to differ-

ent problem. Historically, in the study of closed geodesics on Riemannian Manifolds, M.Morse

successfully established his index theory in the 1930s. It was developed by R.Bott [3] in 1956.

In terms of the Morse index of the variational problem with periodic or anti-periodic boundary

conditions, Daniel Offin gave necessary and sufficient conditions for stability [26] in 2001. Offin

also studied hyperbolicity of minimizing geodesics by applying index theory [27].

9684.871521, 9728.151790, 9859.880060, 10085.91046, 10416.67040,

10868.29203, 11464.49530, 12239.64874, 13243.73696, 14550.63459,

16272.39134, 18585.00314, 21777.62330, 26353.37645, 33254.88426,

44429.81158, 64486.29034, 106749.3980, 225015.7447, 861056.0827

Table 2: The Traces for a = 1, b = 1/
√

3 + 1/100
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In his book Index Theory for Symplectic Paths with Applications [17], Yiming Long introduced

an index for symplectic paths in symplectic matrix group. He settled down the main geometric

features of this index introducing a characteristic class. Also he built the relations with Morse

index and Maslov index. This introductive section is very much guided by this book.

Since the fundamental solution of a general linear hamiltonian system with continuous sym-

metric periodic coefficients is a path in the symplectic matrix group Sp(2n) starting from the

identity, an index theory is established to any symplectic paths. Here the symplectic group is

defined by

Sp(2n) = {M ∈ GL(R2n)|MTJM = J}, (5.1)

where

J =

 0 −In

In 0

 , (5.2)

In is the identity matrix on Rn, and MT denotes the transpose of M . For τ > 0, we define the

set of symplectic matrix paths by

Pτ (2n) = {γ ∈ C([0, τ ], Sp(2n))|γ(0) = I}. (5.3)

Because Sp(2n) is homeomorphic to the product of the unit circle and a simply connected space,

a path γ ∈ Pτ (2n) rotates naturally in Sp(2n) along this unit circle. The point is to find a way to

count this rotation so that the rotation number represents intrinsically the corresponding Morse

index of the related Hamiltonian system. For periodic boundary value problems of Hamiltonian

systems, because of this consideration, we call a path γ ∈ Pτ (2n) degenerate if 1 is an eigenvalue

of γ(τ), and non-degenerate otherwise.

5.1 Floquet Theory and Stability

In this section, we review the Floquet theory and stability theory by following the presentation

of Chapter 2 in [5] Ordinary Differential Equations with Applications and of Chapter 1 in [11]

Convexity Methods in Hamiltonian Mechanics .

Consider a system of m linear equations with continuous τ -periodic coefficients:

ẋ = B(t)x (5.4)
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where B(t) is a real m×m matrix, depending continuously on t ∈ R such that:

B(t+ τ) = B(t) (5.5)

The solutions to the initial value problem:

ẋ = B(t)x, x(0) = ξ ∈ Rm (5.6)

are given by:

x(t) = R(t)ξ (5.7)

where the matrix R(t) is the principle fundamental matrix solution of system (5.4) with R(0) = I.

By the general theory of linear systems, the matrix R(t) is invertible for every t, with R(t)−1 =

R(−t). In the case of a system with periodic coefficients, such as (5.4), Floquet theory gives us

some more information.

Indeed, note that if R(t) is the principle fundamental matrix solution of system (5.4), then

Rτ (t) := R(t+ τ) solves problem:

d

dt
Rτ (t) = B(t)Rτ (t), Rτ (0) = R(τ) (5.8)

so that Rτ (t) = R(t + τ) = R(t)R(τ). Since R(τ) is invertible, the set of eigenvalues σ(R(τ))

does not contain 0. Choose a simply connected domain Ω, and a determination of the logarithm,

log : Ω 7→ C, such that σ(R(τ)) is contained in Ω. By standard results on Banach algebras, logA is

well-defined for all matrices A whose spectrum is contained in Ω, and it is a holomorphic function

of A. In fact, we have the formula:

f(A) = (2iπ)−1

∫
(zI −A)−1 log zdz (5.9)

where the integral is taken over any closed curve in Ω winding once around σ(A). Define a matrix

C with complex coefficients by C := τ−1 logR(τ). We have

R(τ) = expCτ (5.10)

σC = τ−1 log σ(R(τ)) (5.11)

C and R(τ) have the same invariant subspaces. (5.12)

We now understand system (5.4) as in a differential equation in Cm. We have
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Theorem 5.1. (Floquet’s Theorem). If R(τ) is a principle fundamental matrix solution of the

τ -periodic system (5.4), then, for all t ∈ R,

R(t+ τ) = R(t)R(τ) (5.13)

In addition, for each possibly complex matrix C such that

eτC = R(τ), (5.14)

there is a possibly complex τ -periodic matrix function t 7→ P (t) such that R(t) = P (t)etC for all

t ∈ R. Also, there is a real matrix S and a real 2T -periodic matrix function t 7→ Q(t) such that

R(t) = Q(t)etS for all t ∈ R.

The representation R(t) = P (t)etC in Floquet’s theorem 5.1 is called a Floquet normal form

for the fundamental matrix R(t). We will use this normal form to study the stability of the zero

solution of periodic linear system (5.4).

The eigenvalues of R(τ) are called the Floquet multipliers: they are uniquely defined. The

eigenvalues of C are called the Floquet exponents: they depend on the particular choice of C,

which is related to R(τ) by the equation R(τ) = exp(Cτ). If we denote by λi the Floquet

multipliers, and by ωi the Floquet exponents, properly ordered, we have the obvious relation:

λi = exp(ωi) for 1 ≤ i ≤ m

so that the Floquet multipliers give the Floquet exponents modulo 2πiτ−1. Note for instance that

system (5.4) has a periodic solution if and only if 1 is a Floquet multiplier. More generally, the

system (5.4) has a kτ -periodic solution if and only if one of the Floquet multipliers is a k-th root

of unity.

We now turn to question of stability. The system (5.4) is called positively (resp. negatively)

stable if all its real solutions remain bounded for all t > 0 (resp. t < 0). It is called stable if it is

both positively and negatively stable, that is, its real solutions are bounded for all times t ∈ R.

Denote by D the unit disk in C, and by U the unit circle:

D := {z : |z| ≤ 1} (5.15)

U := {z : |z| = 1} (5.16)

Lemma 5.1. The system (5.4) is positively stable if and only if R(τ) is diagonalizable and its

spectrum lies entirely in D. It is stable if and only if it is diagonalizable and its spectrum lies
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entirely on U .

The question of stability becomes more delicate if additional restrictions are put on the system,

namely, that it must be Hamiltonian.

Definition 5.1. The linear system (5.4) is called Hamiltonian if its dimension is even, m = 2n,

and we have B(t) = JA(t), where A(t) is a symmetric matrix and the matrix J is given by equation

(5.2).

Form now on, we shall consider Hamiltonian systems only. We are given a matrix A(t),

symmetric, τ−periodic, depending continuously on t:

A(t) = AT (t), A(t+ τ) = A(t),

and we are interested in the linear differential system:

ẋ = JA(t)x. (5.17)

The fundamental property of such a system is that its principle fundamental matrix solution γ(t)

is symplectic, that is, γ(t) ∈ Pτ (2n) which is given by equation (5.3). Then we have the following

properties.

Lemma 5.2. γ(t) preserves volume and orientation:

Detγ(t) = 1.

Lemma 5.3. If λ is a Floquet multiplier, so are its inverse λ−1, its complex conjugate λ̄, and

λ̄−1. They all have the same multiplicity. If 1 or −1 is a Floquet multiplier, it must have even

multiplicity.

Definition 5.2. The system (5.17) is called stable if all its solutions remain bounded when

t ∈ R. It is strongly stable if there exists some ε > 0 such that, whenever B(t) is a symmetric

τ -periodic matrix, depending continuously on t, with

‖B(t)−A(t)‖ ≤ ε, ∀t

the system ẋ = JB(t)x is stable.

Definition 5.3. A symplectic matrix M is called stable if all its iterations Mk remain bounded

when k ∈ Z. It is called strongly stable if there exists some ε > 0 such that all symplectic matrices

N with ‖M −N‖ ≤ ε are stable.
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Lemma 5.4. System (5.17) is strongly stable if and only if the symplectic matrix γ(τ) is

strongly stable.

From lemma 5.1, system (5.17) is stable if and only if the symplectic matrix γ(τ) is diagonal-

izable and its spectrum lies entirely on U .

Let H ∈ C2(R/(τZ)×R2n,R). Suppose x is a τ−periodic solution of the Hamiltonian system

ẋ(t) = JH ′(t, x(t)), (5.18)

such that H is C2 along the orbit x(R) of x. Its linearization along the orbit x(t) is

ξ̇ = JH ′′(x(t))ξ (5.19)

which is a linear Hamiltonian system. The associated symplectic path of x is defined to be the

principle fundamental solution γx of the linearized Hamiltonian system (5.19). The eigenvalues

of γx(τ) are called Floquet multipliers of the solution x of the Hamiltonian system. By Floquet

theorem, the periodic solution is linearly stable if all the Floquet multipliers are on unit circle and

γx(τ) is diagonalizable.

5.2 Index Theory for Symplectic Paths

We are going to study the global structure of the symplectic group Sp(2n) and build the

relationship between the linear stability of Hamiltonian system (5.18) and index theory.

5.2.1 Definition of Index Theory

In this subsection, we will use the same notation and follow the presentation of chapter 2 and

chapter 5 in Y. Long’s book Index Theory for Symplectic Paths with Application [17] to define an

index for Symplecitic paths.

Let U be the unit circle in the complex plane C. For any ω ∈ U and M ∈ Sp(2n), we define

Dω(M) = (−1)n−1ω−n det(M − ωI).

Then D is a real smooth function on U × Sp(2n). According to the value of Dω, we define some

subset of Sp(2n). For ω ∈ U , we define the ω−singular set Sp(2n)0ω of Sp(2n) and its subsets
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Mk
ω(2n) with 0 ≤ k ≤ 2n by

Sp(2n)0ω = {M ∈ Sp(2n)|Dω(M) = 0},

Mk
ω(2n) = {M ∈ Sp(2n)|νω(M) = k}

where νω(M) = dimCkerC(M − ωI). We also define the ω−regular sets of Sp(2n) by

Sp(2n)±ω = {M ∈ Sp(2n)| ±Dω(M) < 0}

Sp(2n)∗ω = Sp(2n)+ω ∪ Sp(2n)−ω

For τ > 0 and ω ∈ U , we further define the set of ω−non-degenerate paths by

P∗τ,ω(2n) = {γ ∈ Pτ (2n)|γ(τ) ∈ Sp(2n)∗ω},

and the set of ω−degenerate paths by

P0
τ,ω(2n) = Pτ (2n)\P∗τ,ω(2n)

For any symplectic matrix M ∈ Sp(2n), it can be represented in the form (polar decomposition)

M = AU,

where A =
√
MMT is a symmetric symplectic positive definite matrix, U is a symplectic orthog-

onal matrix, and they are uniquely determined by M . By the polar decomposition, it is easy to

prove that the symplectic group Sp(2n) is homeomorphic to the topological product of the unit

circle U in the complex plane C and a simply connected topological Space.

For n = 1, Y. Long in [17] introduce a geometric representation of Sp(2) in R3. For any matrix

M ∈ Sp(2), by the polar decomposition, M can be written in the form

M =

 r z

z (1 + z2)/r


 cos θ − sin θ

sin θ cos θ

 , (5.20)

where (r, θ, z) ∈ R+ × S1 × R, R+ = {r ∈ R|r > 0}, S1 = R/(2πR − π), and (r, θ, z) is uniquely

determined by M . Viewing (r, θ, z) as the cylindrical coordinates in R3, we obtain a representation

of Sp(2) in R3. Under this representation, it is easy to see that the two eigenvalues of M are

λ =
1
2r

((r2 + z2 + 1) cos θ ±
√

(1 + r2 + z2)2 cos2 θ − 4r2),
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which are either two reciprocal real numbers or two conjugate complex numbers on the unit circle

U in the complex plane C. For ω = cosϕ+
√
−1 sinϕ ∈ U and M in the form (5.20), we obtain

Dω(M) = 2 cosϕ−
(
r +

1 + z2

r

)
cos θ.

Then we have

Sp(2)±ω = {(r, θ, z) ∈ R+ × S1 × R| ± (r2 + z2 + 1) cos θ > 2r cosϕ},

Sp(2)0ω = {(r, θ, z) ∈ R+ × S1 × R| ± (r2 + z2 + 1) cos θ = 2r cosϕ}.

Let Sp(2)0ω,± = {(r, θ, z) ∈ Sp(2)0ω| ± sin θ > 0}. Then we have Sp(2)0±1 = Sp(2)0±1,+

⋃
{±I}

⋃
Sp(2)0±1,−, and Sp(2)0ω = Sp(2)0ω,+

⋃
Sp(2)0ω,− for ω ∈ U\R. Here we are especially interested in

the cylindrical coordinate representation of the singular hypersurfaces Sp(2)0ω for ω ∈ U .

In figure 20 (see [17], p.59), this R3−cylindrical coordinate representation of Sp(2)01 is given

with the Descartes coordinates (x, y, z) = (r cos θ, r sin θ, z).

In figure 21, the intersection of the plane {z = 0} with Sp(2)01, Sp(2)0−1, and Sp(2)0ω for some

ω ∈ U are given. Lemma 5.5, lemma 5.6 and lemma 5.7 are easily derived from [17]

Lemma 5.5. For any ω ∈ U the set Sp(2)∗ω possesses precisely two path connected com-

ponents Sp(2)+ω and Sp(2)−ω , and it holds that D(2) =

 2 0

0 1
2

 ∈ Sp(2)+ω and D(−2) =

Figure 20: The R3-cylindrical coordinate representation of Sp(2)01
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 −2 0

0 − 1
2

 ∈ Sp(2)−ω .

Lemma 5.6. Fix an ω ∈ U\R. Sp(2)−1 , Sp(2)+−1 and Sp(2)ω are homeomorphic to R3. Sp(2)+1

and Sp(2)−−1 are homeomorphic to R3\{(x, y, z) ∈ R3|x2 + z2 ≤ y2}.

Thus for any ω ∈ U , the set Sp(2)∗ω is simply connected in Sp(2), i.e., any closed curve inside

Sp(2)+ω or Sp(2)−ω can be continuously contracted inside Sp(2) to a point.

Lemma 5.7. When ω = 1, in the singular hypersurface Sp(2)01, the identity matrix I2 is

the only element which satisfies ν1(I2) = 2. The regular part M(2) of Sp(2)01 possesses precisely

two path connected components Sp(2)01,+ and Sp(2)01,−, both of which are smooth hypersurfaces

diffeomorphic to R2\{0}.

Note that from the R3−cylindrical coordinate represntation introduced above, Sp(2)0ω for

ω ∈ U is orientable. Now we can define the index for symplectic paths in Sp(2) and index

for periodic solutions of Hamiltonian system.

Fix τ > 0, ω ∈ U , we use the concept of intersection numbers in the algebraic topology to

Figure 21: Singular Sets: Sp(2)01 and Sp(2)0ω
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define index for ω−non-degenerate paths in P∗τ,ω. Because an orientation of Sp(2)0ω is defined,

Sp(2)0ω form a locally finite 2−dimensional singular homological cycle [29]. For any τ > 0, let

ξ+(t) =

 1 + t
τ 0

0 τ
t+τ

 for all t ∈ [0, τ ]. For any τ > 0 and a path β ∈ Pτ (2), we denote

β−1(t) = β(τ − t) for t ∈ [0, τ ].

Definition 5.4. For any ω ∈ U , τ > 0, and γ ∈ P∗τ,ω(2), we define

iω(γ) = [Sp(2)0ω : γ ∗ ξ−1
+ ]. (5.21)

For any path γ ∈ P∗τ,ω(2), the two end points of the joint path γ ∗ ξ−1
+ are not located on Sp(2)0ω.

Thus the algebraic homological intersection number in (5.21) is well defined. The integer iω(γ) is

called the index of the symplectic path γ.

To further explain this definition, fixing an ω ∈ U , we consider the smooth paths first. Let

ϕ ∈ C1([0, τ ], Sp(2)) such that ϕ(0) = D(2) and ϕ(τ) ∈ Sp(2)∗ω. Then the direction of ϕ at the

point ϕ(t) is defined to be the tangent direction ϕ̇(t) of ϕ at that point. Now we assume the

following conditions on ϕ.

(1) It holds that

ϕ([0, τ ])
⋂
Sp(2)0ω ⊂ ϕ([0, τ ])

⋂
M1

ω(2) ≡ S(ω, ϕ).

(2) ϕ intersects M1
ω(2) transversally, i.e. at any intersection point ϕ(t) ∈ S(ω, ϕ), the tangent

vector of ϕ at the point ϕ(t) is not contained in the tangent plane of M1
ω(2) at the same point,

i.e. ϕ̇(t) · η(ω, ϕ(t)) 6= 0,, where η(ω, x) is the positively directed unit normal vector of M1
ω(2) at

its point x.

Denote by C1
τ,reg(2) the set of all such C1 curves satisfying (1) and (2), and call them the regular

curves in Sp(2). Under these tow conditions, we define the intersection number µ(ϕ,M1(2), x) at

ϕ(t) ∈ S(ω, ϕ) by

µ(ϕ,M, ϕ(t)) = 1, if ϕ̇(t) · η(ω, ϕ(t)) > 0,

µ(ϕ,M, ϕ(t)) = −1, if ϕ̇(t) · η(ω, ϕ(t)) < 0.

Then the intersection number ϕ and Sp(2)0ω is defined by

[Sp(2)0ω : ϕ] =
∑

x∈S(ω,ϕ)

µ(ϕ,M, x), ∀ϕ ∈ C1
τ,reg(2).
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Denote by C1
τ (2) the set of paths in C1([0, τ ], Sp(2)) started from D(2). Let C1

τ,reg(2, D(2)) =

C1
τ (2)

⋂
C1

τ,reg(2). Now fix a path γ ∈ Pτ (2). we consider the C0− approximations ϕ ∈ C1
τ,reg(2, D(2))

of γ ∗ ξ−1
+ satisfying ϕ(τ) = γ(τ). It is easy to see that if ϕ is sufficiently C0−close to γ ∗ ξ−1

+ , the

intersection umber [Sp(2)0ω : ϕ] is independent of the particular choices of ϕ. Therefore we obtain

[Sp(2)0ω : γ ∗ ξ−1
+ ] = [Sp(2)0ω : ϕ]

for all such smooth C0−approximations of γ ∗ ξ−1
+ . Thus definition 5.4 is well defined.

For τ > 0 and ω ∈ U , given two paths γ0 and γ1 ∈ Pτ (2n), if there exists a map δ ∈

C([0, 1] × [0, τ ], Sp(2n)) such that δ(0, ·) = γ0(·), δ(1, ·) = γ1(·), δ(s, 0) = I, and νω(δ(s, ·)) is

constant for 0 ≤ s ≤ 1, then γ0 and γ1 are ω−homotopic on [0, τ ] along δ(·, τ) and we write

γ0 ∼ω γ1.

Note that the index function iω is homotopy invariant, i.e., for any ω ∈ U , γ0 and γ1 ∈ Pτ (2),

γ0 ∼ω γ1 implies iω(γ0) = iω(γ1). Conversely it is also true. In figure 22, γ is 1−homotopic to α1

on [0, τ ] which is defined in the proof of theorem 5.2 but γ is not −1−homotopic to α1 on [0, τ ].

In fact, i1(γ) = 1 but i−1(γ) = 0.

Figure 22: 1-homotopy class of α1

For an ω−degenerate path, i.e., fixed τ > 0, and ω ∈ U , ∀γ ∈ P0
τ,ω(2), there are two methods to

define the index function iω(γ). One is perturbation method and another is minimizing method.
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More details can be found in Chapter 5.1 in [17]. So for any path γ ∈ Pτ (2), an index function

iω(γ) is well defined for all ω ∈ U .

5.2.2 Some Properties of Index Functions

Base on the above definition and lemmas, we prove the folloowing theorems which build a relation

between index function for a syplectic path in Sp(2) and the ending point of the path.

Theorem 5.2. For τ > 0, ∀γ ∈ P∗τ,1(2), we have:

(1) i1(γ) is an even integer if and only if γ(τ) ∈ Sp(2)+1 . Furthermore, if λ1, λ2 are two eigenval-

ues of γ(τ), then 0 < λ1 < 1 < λ2 and λ1 = 1
λ2
.

(2) i1(γ) is an odd integer if and only if γ(τ) ∈ Sp(2)−1 .

Proof. For τ > 0, γ ∈ P∗τ,1(2), assume i1(γ) = k, we define a zigzag standard path αk in

P∗τ,1(2) such that αk ∼1 γ as follows. Set

φτ,θ(t) =

 cos(θ t
τ ) − sin(θ t

τ )

sin(θ t
τ ) cos(θ t

τ )

 ,∀t ∈ [0, τ ], θ ∈ R,

α0(t) = ξ+(t),∀t ∈ [0, τ ],

For 0 ≤ t ≤ τ we define

αk(t) = [D(2)φτ,kπ] ∗ ξ+(t), if k ∈ Z\{0}.

Then αk(τ) =

 2 0

0 1
2

 if k is even and αk(τ) =

 −2 0

0 − 1
2

 if k is odd. αk ∈ P∗τ,1(2) and

i1(αk) = k.

Claim: Both γ(τ) and αk(τ) are in the same 1-regular subset Sp(2)+1 or in Sp(2)−1 .

Because i1(γ) = k = i1(αk), γ ∼1 αk. There exists a map δ ∈ C([0, 1] × [0, τ ], Sp(2)) such that

δ(0, ·) = γ(·), δ(1, ·) = αk(·), δ(s, 0) = I, and ν1(δ(s, ·)) = ν1(δ(s, τ)) = dimCkerC(δ(s, τ)− I) = 0

for 0 ≤ s ≤ 1. By the continuity of δ(·, τ), both γ(τ) and αk(τ) must be in the same 1-regular

subset Sp(2)+1 or in Sp(2)−1 .

Then if i1(γ) = k is even, αk(τ) ∈ Sp(2)+1 . We complete the proof of the first part of (1). As for
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the second part of (1), it is directed from the properties of eigenvalues of sypmlectic matrix. The

proof for (2) is similar as the proof for (1). \

Theorem 5.3. For τ > 0, ∀γ ∈ P∗τ,−1(2), we have:

(1) i−1(γ) is an even integer if and only if γ(τ) ∈ Sp(2)+−1.

(2) i−1(γ) is an odd integer if and only if γ(τ) ∈ Sp(2)−−1.Furthermore, if λ1, λ2 are two eigenvalues

of γ(τ), then 0 > λ1 > −1 > λ2 and λ1 = 1
λ2
.

We will omit the proof of theorem 5.3 because it is similar to the proof of theorem 5.2. From

theorem 5.2 and 5.3, we obtain

Corollary 5.1. For τ > 0, ∀γ ∈ P∗τ,±1(2), i1(γ) is an odd integer and i−1(γ) is an even integer

if and only if all eigenvalues of γ(τ) are on the unit circle U .

5.3 Index for periodic solutions of Hamiltonian system and its stability

zone

In this subsection, first we define the index for linear Hamiltonian system. Then we establish

the stability zone according to the properties of index for the linear Hamiltonian system. Theorem

5.2 and theorem 5.3 will play important roles.

Let x(t) be a periodic solution of Hamiltonian system (5.18) and γx(t) be principle fundamental

matrix solution of its associated linear Hamiltonian system (5.19). By Floquet theorem, the

periodic solution x(t) is linearly stable if and only if all the Floquet multipliers are on unit circle

and γx(τ) is diagonalizable.

For ω ∈ U , we define the index function of x via that of its associated symplectic path γx :

iω(x) = iω(γx).

Theorem 5.4. Let the Hamiltonian system (5.18) have 1 degree of freedom, i.e. n = 1. Suppose

x is a τ−periodic solution of the Hamiltonian system (5.18) and γx is the associated symplectic
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path of x. If γx ∈ Pτ,1(2)∗ and i1(γx) is an even integer, then the periodic solution x is linear

unstable.

Proof. Because the index i1(γx) of the periodic solution is an even integer, γx(τ) ∈ Sp(2)+1 .

So the Floquet multipliers are all real and one is bigger than 1. Therefore the periodic solution is

linear unstable.

Theorem 5.5. Let the Hamiltonian system (5.18) be of freedom 1, i.e. n = 1. Suppose x is a

τ−periodic solution of the Hamiltonian system (5.18) and γx is the associated symplectic path of

x. If γx ∈ Pτ,−1(2)∗ and i−1(γx) is an odd integer, then the periodic solution x is linear unstable.

Corollary 5.2. Suppose x is a τ−periodic solution of the Hamiltonian system (5.18) with

n = 1 and γx is the associated symplectic path of x. If γx ∈ Pτ,±1(2)∗ and the periodic solution

x is linearly stable, then i1(γx) is an odd integer and i−1(γx) is an even integer.

Our final result shows that these two theorems are in fact sufficient for stability as well. Suppose

x is a τ−periodic solution of the Hamiltonian system (5.18) and γx is the associated symplectic path

of x. If γx ∈ Pτ,±1(2)∗, we denote the index of the periodic solution x by ind(x) = i1(γx)+i−1(γx).

Theorem 5.6. Let the Hamiltonian system (5.18) be of freedom 1, i.e. n = 1. Suppose x is a

τ−periodic solution of the Hamiltonian system (5.18) and γx is the associated symplectic path of

x. If γx ∈ Pτ,±1(2)∗ and ind(x) is odd if and only if the periodic solution x of the Hamiltonian

system (5.18) is linearly stable. Or equivalently, ind(x) is even if and only if the periodic solution

x of the Hamiltonian system (5.18) is linear unstable.

Proof. Ind(x) is even if and only if i1(γx) and i−1(γx) are both even or odd. If i1(γx) and

i−1(γx) are both even, by theorem 5.4, i1(γx) even implies that the periodic solution x is linear

unstable. If i1(γx) and i−1(γx) are both odd, by theorem 5.5, i−1(γx) odd implies that the periodic

solution x is linear unstable.

Conversely, assuming x is linear unstable, if i1(γx) is an even integer, then γx(τ) ∈ Sp(2)+1
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by theorem 5.2. But if i−1(γx) is an odd integer, then γx(τ) ∈ Sp(2)−−1 by theorem 5.3. Be-

cause Sp(2)+1
⋂
Sp(2)−−1 is empty, there are no such symplectic paths. So i−1(γx) must be

also an even integer. Therefore ind(x) is even. Similar discussion can be apply to other case

(i1(γx) is an odd integer ). \

For higher dimensional problems, that is when n > 1, there is much less that can be stated

for linear systems with periodic coefficients in these simple terms. But for n = 2, some instability

and stability results can be determined by parity of index. Those results can be applied to study

the stability of N-body problem such as isosceles three body problem [28],[34] and figure eight

solution [8],[41].

5.4 Stability and SP (4)

In this section, we first review the definition of index for symplectic paths with n−freedom by

following the presentation of chapter 5.2 in [17].

For any M ∈ Sp(2n), it has a unique polar decomposition M = AU . We denote by

U(M) =

 u1(M) −u2(M)

u2(M) u1(M)


the orthogonal and symplectic part of its unique polar decomposition. Then u(M) = u1(M) +
√
−1u2(M) ∈ U(n,C). So in such a way, for every path γ ∈ Pτ (2n), we can uniquely associate to

it a path,

uγ(t) = u(γ(t)), ∀t ∈ [0, τ ]

in the unitary group U(n,C). For any γ ∈ C([0, τ ], Sp(2n)), let 4 : [0, τ ] → R be any continuous

real function satisfying

detuγ(t) = exp(
√
−14(t)), ∀t ∈ [0, τ ]. (5.22)

We define the rotation number of γ by

4τ (γ) = 4(τ)−4(0).

Then 4τ (γ) depends only on γ but not on the choice of the function 4 satisfying (5.22).

For any ω ∈ U and γ ∈ P∗τ,ω(2n), by Theorem 2.4.1 in [17] we can connect γ(τ) to M+
n or M−

n by
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a path β : [0, τ ] → Sp(2n)∗ω. Under these conditions, define

k ≡ 4τ (β ∗ γ)/π. (5.23)

Then k is an integer; is independent of the choice of the path β, and k is odd, if β(τ) = M−
n ,

k is even, if β(τ) = M+
n ,

(5.24)

We denote by Pk
τ,ω(2n) the set of all such paths in P∗τ,ω(2n), that possess the property (5.23).

Definition 5.5. For any ω ∈ U and τ > 0, we define the index of a symplectic path γ by

iω(γ) = k, if γ ∈ Pk
τ,ω(2n). (5.25)

Lemma 5.8. (Lemma 1, P.43 of Y.Long [17] and G. Roberts [40]) For M ∈ Sp(4), its

characteristic polynomial has the form

fM (λ) = λ4 − 4Aλ3 +Bλ2 − 4Aλ+ 1 (5.26)

where A = tr(M)
4 , B = 1

2 ((tr(M))2 − tr(M2)). Then

1o (5.26) possesses one pair of conjugate double roots if and only if B = 4A2 + 2.

2o +1 is one root of (5.26) if and only if B = 8A− 2.

3o −1 is one root of (5.26) if and only if B = −8A− 2.

4o i =
√
−1 (or −i = −

√
−1) is one root of (5.26) if and only if B = 2.

Proof. By direct computation. \

Figure 23 in AB-plane is obtained as follows (A similar graph in [40] is used to analyze the linear

stability of equilateral triangle solution in 3-body problem).

〈1〉 Let R be the tangent point of the line B = −8A − 2 to the curve B = 4A2 + 2. Let S

be the tangent point of the line B = 8A − 2 to the curve B = 4A2 + 2. Denote by T the in-

tersection point of the line B = −8A − 2 and the line B = 8A − 2. It is easy to check that

R = (−1, 6), S = (1, 6), T = (0,−2).

〈2〉 We denote by I the open region bounded by the curve B = 4A2 + 2 from left to R and the

line B = −8A− 2 from left to R. Other open regions are illustrated as in Figure 23.

〈3〉 Note that for any M ∈ Sp(4), there corresponds a unique point (A,B) in the AB−plane, where

A,B are the parameters in the characteristic polynomial of M in (5.26). If (A,B) is in region I,
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we may say the symplectic matrix M is in region I and similarly for other regions.

〈4〉 Let σ(M) = {λ|fM (λ) = 0} be the set of eigenvalues of M . By direct computation, we

have:

(1) σ(M) ⊆ {λ1, λ2, λ
−1
1 , λ−1

2 |λ1 < λ2 < −1} if M is in the open region I.

(2) σ(M) ⊆ {λ1, λ̄1, λ
−1
1 , λ̄−1

1 |λ1 = a+ b
√
−1, b 6= 0, ‖λ1‖ 6= 1} if M is in the open region II.

(3) σ(M) ⊆ {λ1, λ2, λ
−1
1 , λ−1

2 |1 < λ1 < λ2} if M is in the open region III.

(4) σ(M) ⊆ {λ1, λ2, λ
−1
1 , λ−1

2 |1 < λ1, λ2 = a+ b
√
−1, b 6= 0, ‖λ2‖ = 1} if M is in the open region

IV .

(5) σ(M) ⊆ {λ1, λ2, λ
−1
1 , λ−1

2 |λ1 < −1, 1 < λ2} if M is in the open region V .

(6) σ(M) ⊆ {λ1, λ2, λ
−1
1 , λ̄2|λ1 < −1, λ2 = a+ b

√
−1, b 6= 0, ‖λ2‖ = 1} if M is in the open region

V I.

(7) σ(M) ⊆ {λ1, λ2, λ̄1, λ̄2|λi = ai + bi
√
−1, bi 6= 0, ‖λi‖ = 1, λ1 6= λ2, λ1 6= λ̄2, i = 1, 2} if M is in

the open region V II.

Recall for any ω ∈ U,M ∈ Sp(2n), the ω−nullity of M is νω(M) = dimC kerC(M − ωI) and

σ(M) is the set of eigenvalues of M . We define the hyperbolic index α(M) of M be the mod 2

number of the total algebraic multiplicity of negative eigenvalues of M which are strictly less than

Figure 23: Stable Region on AB-plane
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−1, and the elliptic height e(M) of M by the total algebraic multiplicity of all eigenvalues of M

on U . An M ∈ Sp(2n)is

truly hyperbolic , if e(M) = 0,

hyperbolic , if 1 ∈ σ(M) and e(M) = 2,

elliptic , if e(M) = 2n,

strongly elliptic , if σ(M) ⊂ U\{1}.

We denote by Spth(2n), Sph(2n), Spe(2n), and Spse(2n) the subsets of all truly hyperbolic, hyper-

bolic, elliptic, strongly elliptic matrices in Sp(2n) respectively. Spth
i (2n) = {M ∈ Spth(2n)|α(M) =

i}, i = 0, 1.

We first prove the following lemmas:

Lemma 5.9. The truly hyperbolic matrices Spth(4) in Sp(4) consist of those symplectic

matrix in the open regions I, II, III, V and the curve B = 4A2 + 2 from left to R and then from

S to right. Further more, Spth
1 (4) is the region V and Spth

0 (4) = Spth(4)\Spth
1 (t) is the region

I, II, III and the curve B = 4A2 + 2 from left to R and then from S to right. The symplectic

matrices in the open region V II as shown in figure 23 are strongly elliptic matrices.

Proof. Let M be a symplectic matrix in the open region I, i.e., the coefficients of its characteristic

polynomial f(λ) = λ4 − 4Aλ3 +Bλ2 − 4Aλ+ 1 satisfy

B > −8A− 2, B < 4A2 + 2 and A < −1. (5.27)

Because all signs of the coefficients in the characteristic polynomial are positive, there is no posi-

tive real root by Descarte’s rule. We can further prove there is no complex roots in the region I.

In fact, there are four different negative roots which are also not −1. α(M) = 0 so M ∈ Spth
0 (4).

By similar arguments, we complete the proof of this lemma. ]

Lemma 5.10. The singular set Sp(4)01 is the line B = 8A − 2. The singular set Sp(4)0−1 is

the line B = −8A− 2. The singular set Sp(4)0i is the line B = 2.

Proof. By direct computation. ]
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Lemma 5.11. The regular set Sp(4)+1 consists of those symplectic matrix in the regions I, II,

III, V I, V II and those curves left to the line B = 8A− 2. Or equivalently, Sp(4)+1 is the left half

plane to the line B = 8A− 2. Sp(4)−1 is the right half plane to the line B = 8A− 2. Furthermore,

if M ∈ Sp(4)−1 , σ(M)
⋂

(1,∞) 6= ∅.

Proof. By theorem 2.4.1 in [17], the set Sp(4)+1 and Sp(4)−1 are the two connected components

in Sp(4). By definition, Sp(4)+1 = {M |D1(M) = (−1)2−1(1)−2 det(M − I) = −det(M − I) < 0}.

Then M+
2 ∈ Sp(4)+1 , M−

2 ∈ Sp(4)−1 , where

M±
2 =



±2 0 0 0

0 2 0 0

0 0 ± 1
2 0

0 0 0 1
2


.

By the continuity of the map M 7→ (A,B), the two connected components lies in the two half

planes divided by the line B = 8A − 2. For M+
2 , the correspondences A = tr(M+

2 )
4 = 5

4 ,

B = 1
2 ((tr(M+

2 ))2 − tr(M+
2 )2) = 33

4 , then B > 8A − 2 and B = 4A2 + 2 which implies that

the top half plane containing M+
2 belongs to Sp(4)+1 . ]

Theorem 5.7. For any γ ∈ P∗τ,1(4), the index i1(γ) is odd if and only if γ(τ) ∈ Sp(4)−1 . Equiva-

lently, the index i1(γ) is even if and only if γ(τ) ∈ Sp(4)+1 .

Proof. γ(τ) ∈ Sp(4)−1 , if and only if γ(τ) can be connected to M−
2 without crossing the

singular set Sp(4)01 (or the line B = 8A− 2), if and only if the index i1(γ) is odd, by the equation

(5.24) and the definition of i1(γ). ]

Theorem 5.8. Suppose x is a τ -periodic solution of the Hamiltonian system and γx is the asso-

ciated symplectic path of x. If γx ∈ P∗τ,1(4) and i1(γx) is an odd integer, then the periodic solution

x is linear unstable.

Proof. Because γx ∈ P∗τ,1(4) and i1(γx) is an odd integer, γx(τ) ∈ Sp(4)−1 . Therefore, γx(τ)

has an positive real eigenvalue which is larger than 1. By lemma 5.4 and lemma 5.11, the periodic
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solution x is linear unstable. ]

The proof of lemma 5.12 and theorem 5.9 is similar to the proof of lemma 5.11 and theorem

5.8.

Lemma 5.12. The regular set Sp(4)+−1 consists of those symplectic matrix in the regions

I, II, III, IV, V II and those curves right to the line B = −8A−2. Or equivalently, Sp(4)+−1 is the

right half plane to the line B = −8A− 2. Sp(4)−−1 is the left half plane to the line B = −8A− 2.

Furthermore, if M ∈ Sp(4)−−1, then σ(M)
⋂

(−∞,−1) 6= ∅.

Theorem 5.9. Suppose x is a τ−periodic solution of the Hamiltonian system and γx is the as-

sociated symplectic path of x. If γx ∈ P∗τ,−1(4) and i−1(γx) is an odd integer, then the periodic

solution x is linear unstable.

Theorem 5.10. Suppose x is a τ−periodic solution of the Hamiltonian system and γx is the

associated symplectic path of x. If γx ∈ P∗τ,1(4)
⋂
P∗τ,i(4)

⋂
P∗τ,−1(4) and i1(γx) is an even integer,

i−1(γx) is an even integer and ii(γx) is an odd integer, then the periodic solution x is linearly stable.

Proof. Because γx ∈ P∗τ,1(4)
⋂
P∗τ,i(4)

⋂
P∗τ,−1(4), then σ(γx(τ))

⋂
{1,−1, i} = ∅. That

i1(γx) is an even integer implies γx(τ) is in the right half plane to the line B = 8A − 2. That

i−1(γx) is an even integer implies γx(τ) is in the left half plane to the line B = −8A − 2. That

ii(γx) is an odd integer implies γx(τ) is in the lower half plane to the line B = 2. Therefore,

γx(τ) must fall into the region V II. σ(γx(τ)) ⊆ U and γx(τ) is diagonalizable. By lemma 5.4, the

periodic solution x is linearly stable. ]
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